2018 UKSim-AMSS 20th International Conference on Modelling & Simulation

Software Supporting Parameter Optimization of Finite Element Models

Burkhard Hensel and Klaus Kabitzsch

Chair of Technical Information Systems
Technische Universitit Dresden
Dresden, Germany
e-mail: burkhard.hensel@tu-dresden.de

Abstract — When very detailed simulation of geometrically
complex objects is needed, finite element models are often the
best choice due to their description of spatial and temporal
behavior of the modelled object. The drawback of finite
element models is their large number of parameters. This
makes it difficult to match a model to a real measured object
by process identification methods. In this paper this problem
is addressed by new software that is compatible to ANSYS as
the probably most known finite element software.

Keywords — finite element models; parameter optimization;
process identification

L INTRODUCTION

Finite element models (FE models, FEM) describe the
behavior of fields both spatially and temporally in arbitrary
resolution. Due to that advantage they are used in many
engineering domains. The benefit of using high-quality FE
models is high accuracy for spatially distributed problems.

In many cases FE models are designed to represent real
existing objects. In that case, measurements of the real
machine can be used to optimize the parameters of the
model in order to match the model as closely as possible to
the modelled object. This task is known in systems theory as
process identification or system identification. However, the
widely-known methods of system identification [1-3] are
only suited for models with condensed parameters, e.g.
differential equations and transfer functions. There are just a
few publications about system identification of FE models
(see Section I1.C).

This problem is addressed in this paper. New software is
presented that provides a user-friendly graphical interface
for optimization of FE models using measurements as
reference. In order to make reusing a lot of existing models
possible, the software is compatible with ANSYS, the
probably most known software for FE model creation and
simulation. The new software does not provide an own FE
solver, it just adds a “control interface for parameter
optimization” on top of ANSYS. The software is designed
to be extendable to other FE solvers, too.

Section II gives an overview about the problem, its
complexity and the state of the art. Section III explains the
identification procedure that is supported by the software.
An application example is given in Section IV. Finally,
conclusions are drawn (Section V).

0-7695-6405-4/18/$31.00 ©2018 IEEE

DOI 10.1109/UKSim.2018.00022

55

II. PROBLEM DESCRIPTION

A. Kinds of parameters

FE models consist of a set of geometrically connected
“elements” (compare Figure 5). Each node of the model is
described by a partial differential equation. Additionally,
for the elements that are not fully surrounded by other
elements boundary conditions are defined.

FE models contain different types of parameters. There
are the parameters of the partial difference equation of each
node, parameters of the boundary conditions, and the initial
values. All types of parameters can be unknown and thus
subject of a parameter identification task.

B. Identification problem and complexity reduction

The quality of models is typically evaluated using the
difference between the measured output variables x,,¢q5; Of
the real object and the appropriate simulation output X, ;.
The typical performance measure is the root-mean-square
error for each measurement point i

2
Zj‘v=1(xmeas,i(j)—xsim,i(j))
N b

RMSE; = (1)

where N is the number of available measurement samples.
If M measurement positions shall be taken into account,
usually a weighted sum with weights w; is used:
RMSE = 52911 w; - RMSE; ©)
A problem of FE models regarding parameter
optimization is their large number of parameters. In
general, each element or node of an FE model can have an
own set of parameters, resulting in an overall number of
parameters that will often exceed 1,000 or 10,000. It is well
known that for identification of N model parameters at least
N linearly independent tuples of measurement samples
must be known, because otherwise an infinite number of
solutions may exist. Additionally to this, the more
measurements are taken into account, the smaller is the
influence of (temporary or statistical) measurement errors
on the quality of the estimated parameter values. However,
in most cases much less measurement samples will be
available. Even if enough measurement samples would be
available, the optimization of this amount of parameters
would be computationally expensive and very error-prone
for numerical reasons.

This problem can only be solved by reducing the

number of parameters before parameter identification. This
can be done in a combination of the following strategies:

1. In most FE models, many parameters can be
assumed to be equal. For example, if many
elements of the modelled physical object consist of
the same material, all nodes use the same parameter
values. Thus, only one value has to be identified
and can be used for all nodes together, perhaps with
a scaling factor for taking the different sizes of the
elements into account.

The parameters do not have the same relevance for
system identification. For example, elements that
are geometrically far away from the measurement
points have often only little influence on the model
quality and can be parameterized using estimated or
empirical values, e.g. from material databases.

The parameters are usually not equally uncertain.
For example, material properties of known steel
types may be known quite accurately while
properties that are the result of manual
manufacturing may be very uncertain. It is usually
a good idea to focus on the most uncertain
parameters.

Using these strategies, the number of parameters can
often be reduced to a manageable set. It should be
considered that system identification does not result in the
physically most plausible value for each parameter but in
that parameter set that minimizes the performance measure
RMSE. Due to this difference, modeling errors caused by
the parameter reduction will be compensated by “physically
wrong” values of the automatically optimized parameters
so that the model may fit to the real data better than a
physically plausible manual parameter setting.

C. State of the art

As stated above, identification of parameters is always
needed when an (FE) model represents a real object.
However, usual text books about finite element models do
not address that topic [4-9], and text books about system
identification do not mention FE models [1-3]. To the
authors’ knowledge, there are only a few publications that
deal with strategies for the parameter optimization of FE
models [10-11]. ANSYS Workbench (the probably most
known software for FEM design and simulation) provides
“Parameter sets” to deal with different parameterizations of
a model, but automatic parameter optimization based on
measurement data is rather difficult. Khedkar et al. already
developed software for updating parameters of ANSYS
APDL scripts [12] but did not provide automatic parameter
optimization that also requires the automatic evaluation of
simulation results.

Because of this lack of software support, in practice
rather simple and/or elaborate methods are used reaching
from manual trial and error to writing case-specific
optimization programs for each model. This experience

56

Finite Element Software Identification Software

create FE problem with
visual front end
(geometry, mesh,

boundary conditions,

initial conditions etc.)

script from visually
L generated problem

! !

/| define inputs, parameters, }
i

automatically generate]

I (and outputs) as script
' L variables

§
’
/
i
e
’
L3

1 «
14,

select script

\’

set values of constant
parameters

‘ \’

set start value and limits of
K unknown parameters
[

n
n
"
\

set identification options
(optimization criterion,
abort conditions etc.)

'
"
"

W

(R

v

VA

Ry

B \l/
VL

Vo

IR

R

Y

R

v

start parameter
optimization procedure

v

|
)
\
[{ optimization procedure (see separate figure)]
'
1
)
'
\

v

visualize optimal
parameters

parameters to visualize

(" run simulation with optimal }
L details

Figure 1. Overall work flow.

coincides with the practice of the different project partners
of the authors that deal with FE models day by day.

III. SOFTWARE CONCEPT AND IDENTIFICATION
PROCEDURE

In this section the new software and the work flow that
is supported by the software are described.

A. Basic Workflow

Figure 1 gives an overview about the work flow that is
supported by the new software.

There is a division of work between the FE software
and the identification software. The new identification
software is not intended or suited for creating new FE
models. For that purpose “real” FE software has to be used.
Also the boundary conditions as well as the partial
differential equation are edited in the FE software. This
avoids reimplementation of existing software and allows
using all features of existing FE software.

Also the sensor placement, design of experiments and
data acquisition (measurement) is assumed to be already

FE Software

FE model
script with
concrete
<-
parameter
values

Identification Software

J

S

for each simulation run

add parameter settings at
the beginning

!

call FE software and run
script

adjust
read results file or parameter
variables values
according to
\l/ optimization
algorithm

evaluate error
(optimization criterion)

y

check abort condition

\Z

Figure 2: Optimization procedure.

done and not content of this paper. The data can be
imported into the identification software in different
formats including usual CSV files with arbitrary column
separator fields, header lines, language-specific dot
symbols etc.

Usual FE software can be automated using script files
(scripts). For ANSYS there are two types of scripts, the
traditional APDL files and the newer “Journals” for
ANSYS Workbench. The scripts contain commands
defining geometry, boundary conditions, equation type etc.
Since it is—at least for simple problems—much easier to
define an FE problem using the GUI (graphical user
interface) of the FE software instead of writing a script,
most FE software supports the automatic generation
(“recording”) of a script for the actions the user does in the
GUL In that way, the “recorded” script can be used

afterwards for repeating all these steps. Further, the script
can be adapted to solve other FE problems with a similar
structure. To simplify that task, the script languages allow
defining parameters/variables, i.e. using symbolic names
those values can be set comfortably before a simulation
run.

These variables are used for communication between
the identification software and the FE solver. The
identification software sets all unknown variables in the
optimization loop, runs a simulation, reads the simulation
output signals and evaluates them according to the RMSE
performance measure. The optimization procedure is given
in Figure 2. Which variables are optimized inside which
bounds and with which optimization algorithm can be
adjusted by the user. This is shown in the screenshot of
Figure 3. Also the stop criterion (e.g. a maximum time span

(£ Global Parameter Optimization - o IES
[Search space (paramaters to be identified) \ Reference signals | Optimization settings Current optimum

Active System Parameter Start value Minimum Maximum =

W] ANSYS_script ScriptParameter 1 (ht_tr_c) [3E-5 0.0 6E-5

v| ANSYS_script Script Parameter 2 (cf_ht_cd) 1E-5 | 'O 0 3E-5

[v] ANSYS_script Script Parameter 3 (r_motor) 0.003 [0.0 | 10.005

[v] ANSYS_script Script Parameter 4 (r_bear) '6E-4 0.0 0.001

] ANSYS_script Script Parameter 5 (r_nut) 0.001 [0.0 0.002

lv] ANSYS_script Script Parameter 6 (r_spind) Y1E-4 '0 0 '2 5E-4

[v] ANSYS_script Script Parameter 7 (r_tb_inn) 2.5E-4 0.0 5E-4 =

0%
Start optimization =
)%

Figure 3. Optimization dialog (initial value and limits of parameters)

57

&
&

Temperature sensors:
1 spindle (pyrometer)
2 nut

3 drive
4 bearing

5 belt housing
6 tube middle

7 tube end (hand)
8 air

Figure 4. Actuator strut used for case study and installed temperature sensors.

for optimization or a maximum number of iterations) can
be defined. Three types of optimization are currently
provided by the optimization software: Monte Carlo
optimization, Simulated Annealing, and Evolutionary
Optimization.

After the optimization run has finished, the identified
values are shown to the user. All model parameters are set
to the best values and a simulation run can show the
simulation outputs of the found optimum. The user can
either go back to the FE software and analyze this solution
using all features of the FE software, or they can change the
optimization settings (e.g. wider bounds, other start
parameters or another optimization algorithm) to make a
further optimization run.

B. Implementation notes

The concept has been implemented as a prototype using
ANSYS APDL scripts for model description. Since the
proposed work flow works for all kinds of script-based
simulation software, it is planned to couple also other FE
solvers. The basis of the new software is a “general
purpose” identification software described in [13].

Since ANSYS provides no API and the results file
format is closed, it is necessary to export the relevant time
series as CSV files via appropriate APDL code. For that
purpose a wizard has been included in the new
identification software so that this code can be generated
automatically for all user-specified sensor positions. This
automatic support is one of the major differences to general
purpose system identification software regarding finite
element models.

IV. CASE STUDY: ACTUATOR STRUT
The concept of the software is explained using a
simplified practical application example.
A. Description of the modelled object

The modelled object is an actuator strut, shown in
Figure 4. Actuator struts are used in machine tools for exact

58

positioning of the tool and/or work piece. The actuator strut
consists of a spindle that is (partially) inside a steel tube.
The spindle and the tube are connected via a ball screw nut.
A motor rotates the spindle, moving the ball screw nut with
the tube to the left or to the right, depending on the rotation
direction. The left end of the spindle is mounted in a
bearing.

The goal of modelling the actuator strut is to analyze
(and later predict) the time-varying temperature field of the
actuator strut, because the temperature slightly influences
the size due to thermal expansion and therefore the
production accuracy of the machine tool of which the
actuator strut is a part of [14]. There are three relevant heat
sources: The friction of the ball screw nut, the friction of
the bearing, and the power loss of the motor. However, the
values of these sources, i.e. the heat flows, are unknown as
they depend on the handcrafted manufacturing of the
concrete strut. Therefore, these values have to be identified
using measurements. Since it is also unknown, which
amount of the heat generated in the ball screw nut flows
into the tube and which amount into the spindle, two
parameters are used that have to be identified. Additionally,
there is unknown heat transfer from the spindle to the tube
via the air inside the tube.

The temperature is measured at 7 positions at the strut
and the air, see Figure 4.

The goal of this demonstration example is not to reach a
maximum of accuracy but to show the principal work flow.
The actuator strut has only been modelled in two
dimensions (2D model), because only the change of the
length is practically important. Also the movement of the
actuator strut is not modelled, because the heat flow can be
averaged since one cycle of movement is short (a few
seconds) compared to the change of the temperatures
(minutes to hours).

The measurement data contains 74 samples. Therefore,
theoretically, up to 74 independent parameters could be
estimated. However, only the five parameters mentioned
above are estimated automatically.

Figure 5. Mesh (elements) of the ANSYS model of the actuator strut.

The parabolic PDE representing the heat flow inside the
strut is

& — div(k, - grad T) = 0 3)
with the thermal diffusivity (coefficient of temperature

conduction)
K

ke ==, (4)
where p is the density, ¢ the specific heat capacity, T the
temperature difference to the initial temperature, and & the
coefficient of heat conduction (thermal conductivity). grad
T is the gradient of the temperature 7.

The boundaries with contact to the air are modelled as
free heat convection, i.e. as “generalized” Neumann
boundary conditions

n-k-gradT =—q-T, %)
where ¢ is the heat transfer coefficient and » the normal
vector on the surface.

Heat entries into the modelled object due to friction and
the motor are modelled as Neumann boundary conditions

n-k-gradT =g, (6)
where g is the reference heat flux (i.e. heat flow per area).
For that purpose, at the heat sources small regions of
“empty space” have been integrated so that the heat can be
represented as boundary condition at the boundary of that
space. The alternative would be to use a source term Q in
the partial difference equation (3), but this solution would
be technically more complicated without a high probability
for getting significantly better simulation results at the
Sensor positions.

B. Model implementation

ANSYS 18.1 has been used to model the actuator strut.
The model has 4197 nodes and 1129 elements that have
been generated with the ANSYS “MeshTool” using “Smart

i/

size 3” and element type “PLANE77”, what is an
abbreviation for curved 8-node elements. The mesh is
shown in Figure 5. The simulated time span is roughly 3
hours. One simulation took about 19.5s of computational
time.

C. Optimization

Among the currently supported optimization algorithms,
evolutionary optimization produced the best results in the
same time for the given example application. However, the
quality of results depends strongly on the user-specified
bounds of the parameters to be optimized. Therefore,
several optimization runs have been done where the
optimum of the preceding run has been taken as initial
parametrization of the subsequent optimization run. After
each run the parameter bounds have been set to roughly the
double value of the optimal value before. This has been
repeated until the optimized values did not change any
more significantly. Each optimization run needed between
30 and 120 minutes containing up to 370 simulations.

The temperature field at the end of the simulation with
optimized parameters is shown in Figure 6. The values of
the parameters after the full optimization process are
presented in Table 1. These values are partially different
from the theoretically expected ranges. There are several
reasons for that phenomenon: the two-dimensional
modelling, inaccuracy of manually estimated parameters,
and deviations between the geometrical properties of the
model and the real object including exact sensor placement.
Exact modelling was not a central goal of this paper (but
only the demonstration of the principle work flow) and can
be subject of future work. By the way, the two-dimensional
modelling is also the reason why the units of the parameters
do not match to the three-dimensional ones.

The RMSE; for each measurement point (except the air)

Ioae o

E]

Figure 6: Final temperature field (offset to initial temperature in K, lower picture) with optimized parameters.

59

Table 1. Values of Parameters after Optimization

Parameter Value Unit

Heat transfer coefficient ¢, 3.1-10° m*/s (2D)
Coefﬁc1§nt of temperature 12-10° E
conduction k»
Motor heat flux g m 2.5-10° (mZK)/s (2D)
Bearing heat flux g, 6.3-10* (m’K)/s (2D)
Nut to tube heat flux g, n 1.0-10° (m’K)/s (2D)
Nut to spindle heat flux g, 1.3-10" (m’K)/s (2D)
gadlatlon heat flux inside the tube 2510% (m’K)/s (2D)

2,it

and their mean value are given in Table 2.

If only one measurement point would be optimized, the
RMSE; for that location could become much smaller,
because all 5 optimization parameters would be used to
minimize this RMSE;. However, in general this results in a
larger RMSE; for the other measurement points.

V.

This paper presented new software for optimizing
parameters of finite element models, i.e. process
identification. This is the basis for tasks like model-based
deformation compensation due to load and thermal
expansion [14].

The advantages of the new software compared to
general purpose system identification software are the link
to ANSYS as the most widely used finite element software,
a wizard for script code generation focused on FE models, a
set of optimization methods that are suitable for FE models,
and the generic methodology that is in principle compatible
to many state-of the art FE solvers. The compatibility to
ANSYS has been demonstrated. Therefore, it is not
necessary to reimplement existing models for optimizing
their parameter values. The same strategy would also work
for other script-based FE solvers, e.g. OpenFOAM or
ANSYS Workbench. Because of the generic concept, the
adaptation effort to support these FE solvers will be
relatively small. Additionally, the current state builds the
basis for exploring enhanced parameter identification
techniques for finite element models. This is simplified due
to the modularised architecture of the system identification
software that can be simply extended by plug-ins.

CONCLUSION, DISCUSSION AND OUTLOOK

ACKNOWLEDGMENT

This work has been funded by the German Research
Foundation in the collaborative research centre/Transregio
96.

REFERENCES

R. Isermann and M. Miinchhof, Identification of Dynamic Systems -
An Introduction with Applications. Heidelberg: Springer, 2011. DOI:
10.1007/978-3-540-78879-9

(1

60

[2]

[3]

(4]

(3]

(6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Table 2. Values of parameters after optimization

Sensor position RMSE; in K
Spindle 1.26
Nut 1.54
Drive 2.31
Bearing 2.09
Belt housing 2.96
Tube middle 2.10
Tube end (hand) 0.97
Mean of all 1.89

L. Ljung, System Identification - Theory for the User. 2nd. Upper
Saddle River, NJ, USA: Prentice Hall, 1999.

T. Soderstrom and P. Stoica,
Hempstead: Prentice Hall, 1989.

1. Babuska and T. Strouboulis, The Finite Element Method and its
Reliability. New York: Oxford University Press, 2001.

Z. Chen, Finite Element Methods and Their Applications. Berlin:
Springer, 2005. https://doi.org/10.1007/3-540-28078-2

G. Dhondt, The Finite Element Method for Three-dimensional
Thermomechanical Applications. Chichester: John Wiley & Sons,
2004.

M. R. Eslami, Finite Elements Methods in Mechanics. Cham:
Springer, 2014. DOI: 10.1007/978-3-319-08037-6

P. E. Lewis and J. P. Ward. The Finite element method: principles
and applications. Wokingham: Addison-Wesley, 1991.

D. W. Pepper, and J. C. Heinrich, The Finite Element Method: Basic
Concepts and Applications. Taylor & Francis, Hemisphere
Publishing, 1992.

System Identification. Hemel

M. Sanayei and P. Rohela, “Automated finite element model
updating of full-scale structures with PARameter Identification
System (PARIS).” Advances in Engineering Software, 2014: 99-110.
https://doi.org/10.1016/j.advengsoft.2013.09.002

H. Wernsing and C. Biiskens, “Parameter identification for finite
element based models in dry machining applications.” Procedia
CIRP, 2015: 328-333. https://doi.org/10.1016/j.procir.2015.03.037

S. S. Khedkar, S. S. Chaudhari, and P. D. Kamble, “Analysis of 3-D
Model in ANSYS 9.0 by Java Program and Macros Using
Interlinking Concept Verification Though the CFD Analysis.”
Proceedings of the International Conference on Advances in
Mechanical Engineering (AME 2010). Kerala, India, 2010. 93-96.
DOI: 02.AME.2010.01.532

B. Hensel, S. Schroeder, and K. Kabitzsch. “New coordination
software for parameter identification applied to thermal models of an

actuator strut.” Journal of Computational Engineering, September
2017: 12 pages. https://doi.org/10.1155/2017/3169785.

K. GroBmann, ed. Thermo-energetic Design of Machine Tools: A
Systemic Approach to Solve the Conflict Between Power Efficiency,
Accuracy and Productivity Demonstrated at the Example of
Machining Production. Cham: Springer, 2005. DOI: 10.1007/978-3-
319-12625-8

