
Localization of Signal Peaks in Photon Science Imaging

Daniel Becker
University of Applied Science

Berlin, Germany

Email: beckerd@htw-berlin.de

Achim Streit
Steinbuch Center for Computing

Karlsruhe Institute of Technology, Germany

Email: achim.streit@kit.edu

Abstract—In order to get insights into the atomic structure of
tiny samples like proteins or viruses, X–Ray microscopy can be
utilized. Here, an X–Ray laser illuminates crystallized samples
and the scattered light is captured by a detector device in the form
of an image. Due to limitations of the experimental setups, these
images not only contain the relevant data, but are contaminated
by noise from various sources. This makes it hard to isolate
useful images containing enough valid signals to be used for
further research. In this article, we explore the different sources
of noise and propose a series of techniques for identifying valid
signals in photon science. The outcome of our algorithm is then
compared to predictions obtained by the tools currently in use.

Keywords—image processing; photon science; big data; signal
processing; X–ray microscopy; nanocrystallography.

I. INTRODUCTION

In photon science, tiny crystallized samples are illuminated

by X–ray laser light pulses in order to explore their internal

structure. The intensity distribution of the diffracted light

is captured by a detector device which takes an image for

every laser pulse. The images may show bright peaks (“Bragg

spots”) whose locations are essential for unfolding the internal

structure of the probe.

Since X–rays are used, the samples are destroyed withing

femtoseconds due to the intensity of the laser. Consequently,

many samples have to be analyzed for the unfolding analysis.

In order to efficiently do this, experiments are constructed with

a probe transportation system in place. Fig. 1 shows the setup

of the LCLS experiment at Stanford[1]. Here, a jet stream

is used to transport the probes across the light source. This

makes it possible to move a high amount of probes, which

is necessary for the 120 Hz repetition rate of the laser. This

results in 120 taken images per second. However, since it is

not possible to synchronize the stream of probes with the laser

pulses, only an order of 5% of the samples are illumintead in

a way that allows further analysis. Consequently, up to 95%

of the images are useless for further research[2].

The resolution of the detector device is 2.3 MP at 14-bit

depth. This results an image size of about 4 Megabytes. At a

rate of 120 Hz, this results in a data volume of about 1.8 TB/h.

Currently, all data is stored offline for later analysis. This is

feasable due to the rather low amount of data.

But this won’t be an option in experiments currently being

built. For example, the European X–ray Free Electron Laser

(XFEL) will operate at an image repetition rate of 27,000 Hz

[3]. Here, even if the detector is kept at the same resolution,

the amount of data will increase by factor 225. This leads to

Fig. 1. Nanocrystallography. X-ray pulses from a free-electron laser (FEL)
interact with nanocrystals flowing in a buffer solution. The detector records
the resulting diffraction patterns [7].

the problem, that storing data offline is no longer an option.

To achieve the full potential of this experiment, new solutions

have to be explored in order to reduce the amount of data

actually stored for later analysis.

In [4] we introduced a simplistic and fast neural network for

weeding out entirely blank images during the data collection

phase, being as close to the detector as possible. The problem

remains to handle images containing some data, but which are

still not usable for more sophisticated analysis.

In this article, the next step in the analysis chain is con-

sidered, namely determining the position of Bragg spots with

a view to further pursuing data reduction in near–real time.

Bragg spot identification is made difficult due to noise smeared

non–uniformly over the image due to the diffraction of laser

light by the buffer solution. In addition, there is a noise

contribution due to stuck or broken pixels in the detector

device. In this article, we present three connected techniques

for localizing Bragg spots. Firstly, noise removal based on

a convolution technique, secondly, edge detection using the

Sobel operator [5] and, thirdly, an algorithm is suggested for

finding local clusters within an image. LCLS data from three

different samples are used to verify our approach. The results

are compared with results obtained by the Cheetah toolkit, the

standard software for Bragg spot finding at LCLS [6].

A. Related Work

In the article Crystalline object evaluation by image pro-
cessing [8] Billingsley et al. use the Sobel operator for
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verifying whether the crystallization of protein samples was

successful. During the growth process of the crystal, images

are taken and an edge detection is performed. This information

is used for finding connected lines within an image which,

in turn, indicate whether a crystal will generate exploitable

diffraction patterns. The decision process itself is carried out

by a support vector machine (SVM).

The currently used solution for pre–selecting images from

the LCLS experiment is called “Cheetah”[6]. It uses an Al-

gorithm called “hitfinder” to analyze given images for Bragg

spots. The algorithm itself only looks for a certain amount of

connected pixels above a predefined intensity threshold. In ad-

dition, several optimization techniques have been incorporated

to compensate for as much background noise as possible. The

results of the “Cheetah” software are used as a reference to

compare our proposed algorithm against.

II. DATA & METHODS

A. Test Data

Diffraction data from three crystallized probes are analyzed:

• the protein Cathepsin B (CatB) [9],

• the 5-Hydroxytryptamine receptor 2B (5HT-2B) [10],

• the granulovirus polyhedron (GV) [11].

For each probe, 25 indexable and 25 non–indexable images

are selected. An image is indexable if a Fourier series index

can be assigned to each Bragg spot of a diffraction pattern.

Bragg spots and the electron density of a sample are related

(in lowest order) by a Fourier transformation, see e.g. [12].

B. Geometry

The detector device is composed of multiple panels (see

Fig. 2). Those individual panels are organized into four quad-

rants. These quadrants are able to slide in and out relative

to the center of the detector. This is nesessary to compensate

for different distribution angels of the scattered light by the

probes, since this can vary due to the transportation liquid used

as well as the structure of the probe researched.

However, this results in varying coordinates for each de-

tector pixel within an image. To work around this, a separate

geometry file is created for each experiment, containing the

physical coordinates for each pixel for this experiment. The

images themselves just contain the sub–images of the panels

organized in a grid to which the geometry file can be applied

to retrieve the physically correct image. Since this is not

necessary for our proposed algorithms it is not applied within

our experiments. The same is true for the Cheetah toolkit,

to which we compare our results. Nonetheless, it is applied

to the images in this article to support the illustration of our

algorithms.

C. Data Normalization

The readout of the pixels is corrected for unphysical data.

The detector collects 14-bit unsigned integer data per pixel

[13]. Negative or very large (> 16,000) readout numbers

indicate broken or stuck pixels and are therefore set to zero.

Fig. 2. The CSPad detector device used at the LCLS experiment at Stanford.

Let I
(raw)
i be the readout number of the i–th pixel of an

analyzed image. The quantity

Ii = I
(raw)
i θ(I

(raw)
i ) θ(16,000− I

(raw)
i )

represents the intensity of the i–th pixel. θ(p) is the unit step

function (zero for negative p, one for non–negative p). The

intensity is normalized to the interval, 0 ≤ Ii ≤ 16,000.

Each detector pixel i can also be identified by two integers

(x, y) characterizing the position of a pixel in the detector

plane where 0 ≤ x, y < dim(I).

D. Average Subtraction

Laser light is always diffracted when propagating through

the buffer solution resulting in an overall background. This

background can be removed to a large extend from an image

by analyzing a series of known blank images and determining

an average noise for each pixel of the image.

To estimate the average background noise, N=500 blank

images are analyzed in advance and for every pixel i the mean
noise

I
(noise)
i =

1

N

N∑
n=1

I
(blank)
n,i (1)

is determined, where I
(blank)
n,i denotes the intensity of the i–

th pixel in the n–th blank image (corrected for unphysical

readout data, see Sec. II-C).

The influence of background effects is explored by consid-

ering the corrected intensity

Ĩi = (Ii − I
(noise)
i )θ(Ii − I

(noise)
i ). (2)

It should be noted that the noise subtraction depends on the

kind of fluid used to transport the crystals. In this article, it is

assumed that the background is static during a measurement

period.
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E. Noise Reduction

Diffraction images contain noise from different sources. In

this section we concentrate on sharply localized noise affecting

only single detector pixels. In contrast, Bragg spots are usually

distributed over several pixels.

The probability for misidentifying a single spot pixel as a

Bragg spot can be reduced considerably by distributing its

intensity over the neighboring pixels by using convolution

techniques, well known in image processing [14]. Let us

introduce the three–dimensional matrix

K =
1

9

⎛
⎝1 1 1
1 1 1
1 1 1

⎞
⎠ .

By convoluting K with an image I

I(noise reduced) = I ∗K
where the convolution (∗) is defined by

I(noise reduced)
x,y =

dimK∑
m=1

dim(K)∑
n=1

Ix−m+2,y−n+2Km,n,

the strength of a single pixel noise at the position (x, y) can

be reduced.

For consistency, the matrix I is set to zero beyond its

boundaries, i.e. Ix,y = 0 for x, y < 0 and x, y ≥ size(I).
Note that there is no overall intensity loss due to the

convolution operation as the normalization of the matrix K
is chosen such that the sum of its matrix components is one.

After convolution, the intensity of isolated single–pixel spots

is damped considerably and approximately comparable with

the average noise in the neighborhood.

An example of the usage of convolution can be seen in

Fig. 3. It can be seen that single pixel noise is drastically

reduced and as a result, spots composed of more than one

pixel are now standing out against the background. This is

best visible in the area around the center of the image.

F. Edge Detection

Bragg spots differ in size, shape, and intensity. However,

what many spots seem to have in common is the shape

of their intensity distribution. This characteristic feature can

be harnessed for identifying Bragg spots by analyzing their

boundaries. A standard technique for detecting edges within

an image is using the horizontal and vertical Sobel operators

[15]

Sh =

⎛
⎝−1 0 1
−2 0 2
−1 0 1

⎞
⎠ , Sv =

⎛
⎝−1 −2 −1

0 0 0
1 2 1

⎞
⎠ .

They are convoluted with an image to determine horizontal
and vertical intensity changes. The quantity

ΔIx,y =

√(
I(noise reduced) ∗ Sh

)2
x,y

+
(
I(noise reduced) ∗ Sv

)2
x,y

(a) before

(b) after

Fig. 3. Example of an image before (3a) and after (3b) convolution with the
matrix K.

can be considered as a measure for the strength of the local

intensity change at the pixel position (x, y) of the image I .

Large values for ΔIx,y indicate an edge at (x, y).

Fig. 4 shows the results of the application of edge detection

to a noise–reduced image. It can be seen that the spots around

the center now stand out even more clearly. Furthermore, the

previously still noisy water halo has been dampened as well,

making the spots stand out clearer in comparison.
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(a) before

(b) after

Fig. 4. Example of an image before (4a) and after (4b) application of edge
detection.

G. Cluster Detection

After applying an edge detection, Bragg peaks can be

viewed as a cluster of connected pixels. This means, a simple

cluster finding algorithm can be used to find connected pixels

within the image, see Fig. 5.

First, an empty matrix is created using the dimensions of the

analyzed image (cluster matrix). Then, each pixel of the origi-

nal image is examined. For each of these pixels, the algorithm

looks at each surrounding pixel within a defined distance. If

the intensity of one of these adjacent pixels is higher than a

defined threshold, the intensity of the corresponding original

1: procedure CLUSTERDETECTION(image)
2: clusterMatrix← dim(image)
3: maximumDistance← 10
4: brightnessThreshold← 400
5: for x = 0; x < size(image); x++ do
6: for y = 0; y < size(image); y++ do
7: for i = x - maximumDistance; i + maximumDistance; i++ do
8: for j = x - maximumDistance; j + maximumDistance; j++ do
9: if image[x][y] >brightnessThreshold

&& distance(image[x][y],clusterMatrix[x][y]) then
10: clusterMatrix[x][y]← clusterMatrix[x][y] + 1
11: end if
12: end for
13: end for
14: end for
15: end for
16: end procedure

Fig. 5. Cluster detection in pseudo–code

pixel in the cluster matrix is increased.

The cluster detection algorithm is not designed for rating

the size and shape of the Bragg spots found. Since the lack

of insights from different areas, e.g. from theoretical models,

it is not possible to make an informed decision, whether a

found cluster is too small or large to represent an actual Bragg

spot. Therefore, only clusters which are obviously too big to

represent a Bragg spot are removed. The threshold has been

set to 1000 pixels.

Once there is a better awareness about the actual boundaries

for spot sizes, the cluster algorithm can be extended so that

spot candidates violating the limits are removed.

III. RESULTS

The proposed techniques in this paper have been applied

to three samples, see Sec. II-A. The Bragg spots identified

by using our “cluster finder” algorithm have been compared

to the results obtained by the “hitfinder” algorithm from the

Cheetah toolkit.

The results of our analysis are split into four classes.

One distinctive property is the removal of background pho-

ton noise before the images are analyzed. Furthermore, the

analysis is applied to indexable and non-indexable images.

Non–indexable means that an image is not suited for further

research.

The results are shown in Tab. I and Tab. II without back-

ground subtraction and in Tab. III and Tab. IV with background

subtraction applied. It can be seen that the amount of spots in

common increases for the second experiment which includes

background subtraction. This is due to the additional reduction

of noise, which reduces the number of false positives by our

algorithm.

IV. CONCLUSION

In this paper, we introduced techniques which, when com-

bined, enable a detection of the majority of Bragg spots of a

diffraction image. To this end, we connected the ideas of noise

reduction, edge detection and cluster finding. We compared the

spots found by our algorithm with the currently used Cheetah

software. Depending on the noise level of the images, we are
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TABLE I
FOUND SPOTS IN INDEXABLE IMAGES

Total spots: hit
finder

Total spots: clus-
ter finder

Spots in
common1

Spots: hit finder
only1

Spots: cluster
finder only2

CatB 937 1,532 89% 11% 48%

5HT-2B 1,400 2,169 68% 30% 59%

GV 1,180 1,603 42% 57% 60%

TABLE II
FOUND SPOTS IN NON-INDEXABLE IMAGES

Total spots: hit
finder

Total spots: clus-
ter finder

Spots in
common1

Spots: hit finder
only1

Spots: cluster
finder only2

CatB 0 66 0% 0% 100%

5HT-2B 827 1,768 68% 30% 59%

GV 2,015 1,287 45% 54% 53%

TABLE III
FOUND SPOTS IN INDEXABLE IMAGES WITH AVERAGE SUBTRACTION

Total spots: hit
finder

Total spots: clus-
ter finder

Spots in
common1

Spots: hit finder
only1

Spots: cluster
finder only2

CatB 937 1,427 90% 10% 42%

5HT-2B 1,400 2,169 72% 27% 58%

GV 1,180 1,093 43% 56% 19%

TABLE IV
FOUND SPOTS IN NON-INDEXABLE IMAGES WITH AVERAGE SUBTRACTION

Total spots: hit
finder

Total spots: clus-
ter finder

Spots in
common1

Spots: hit finder
only1

Spots: cluster
finder only2

CatB 0 22 0% 0% 100%

5HT-2B 827 1,768 59% 39% 68%

GV 2,015 1,204 33% 67% 14%

able to find up to 90% of the spots found by the hitfinder

algorithm, as well as additional ones.

The main problem in detecting correct Bragg spots is the

amount of noise introduced by various sources throughout

the experiment. In this article, we explored a convolution

technique as well as average subtraction which, together, are

able to remove a significant part of the noise. However, it

should be further investigated whether there are alternative or

additional approaches for reducing the noise even more and,

finally, to improve the correct recognition of Bragg spots.

The convolution based techniques for Bragg spot finding

presented in this article can be parallelized, in principle, by

splitting an image into several parts where a natural split is

given by the subimages collected by the panels of the detector

device.

To optimize the runtime of the algorithm proposed even

further, it is possible to integrate multiple optimization steps

into one, since the convolution operations on matrices can be

applied associatively.

To remove the background noise even further, it should be

researched, if it is feasible to calculate a dynamic brightness

threshold for finding bright spots within an image. This could

be done by evaluationg a time–series of images and adjusting

the threshold dynamically.

Whether our cluster finding algorithm might be useful in

identifying Bragg spots in near–real time immediately after

the data taking period and, moreover, to contribute to damming

the flood of data at XFEL, remains to be explored.
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