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Abstract—Strength training exercises are an important part
of fitness training. Although several fitness devices exist to
track and analyze cardio-training activities like walking and
running, devices to track repetitive movements during strength
training exercises are few and they have technical limitations.
We introduce Maxxyt - an autonomous wearable device that
can count repetitive movements during strength training in
real-time. Maxxyt functions without any prior exercise-specific
training and can self-adapt to any generic exercise involving
repetitive movements. It has been designed with the motive of
optimizing the experience of a typical user training in a gym.
It uses an Arduino-compatible microcontroller, with primary
memory of 4 KB. Maxxyt provides haptic and visual feedback
to the user within 2 seconds from starting an exercise. The
proposed method to count repetitions involves three phases:
i) pre-processing, ii) peak-detection using adaptive techniques,
and iii) aggregation of results from various axes. We present
results on test data collected in a gym consisting of 1171
repetitions from 100 sets of 10 distinct exercises. The repetition
count accuracy of the device is 2 repetitions 98% of the time.
These results suggest a new paradigm of responsive, wearable
strength training fitness devices.
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I. INTRODUCTION

Regular exercise plays a crucial role in improving fitness

and reducing obesity [4]. High-intensity strength training

exercises are an effective and feasible means to preserve

bone density while improving muscle mass, strength, and

balance [5].

Automatic tracking can motivate regular fitness activity, in

particular pedometry, which has been extensively studied [6].

Setting and tracking goals positively affects motivation and

enhances performance [7]. A multitude of wearable fitness

trackers exist, they range from pedometers and GPS trackers

to sensors that monitor heart rate, calorie consumption

etc. However, wearable devices having the capability to

address strength training are rare and pose unique technical

challenges.

Weight training involves a combination of different ex-

ercises on multiple machines with varying weights and

repetitions. Several people note their exercises manually on

paper or in applications to keep track of their progress,

which is onerous and time-consuming and therefore neg-

atively affects motivation. Catering to this need, Maxxyt

allows users to focus on the exercise alone, automating

the repetition counting and logging progress. The progress

would be instantly available for the user over mobile or

desktop devices for post workout analysis.

Most fitness trackers use accelerometers to recognize

activity and understand context [3, 8, 9, 10]. Maxxyt uses

a tri-axial accelerometer that returns a real valued estimate

of acceleration along x, y and z-axis and a gyroscope that

measures orientation in terms of angular momentum across

the three axis. These sensors provide inputs for Maxxyt

to capture variety of movement patterns across different

exercises.

In this work, we present a novel, responsive and compu-

tationally inexpensive way to count repetitions. Since the

approach doesn’t require any prior training, it is readily

scalable and generic. Our approach consists of 3 phases

namely: preprocessing for data smoothing, peak detection
for repetition counting along 3 axes for both accelerometer

and gyroscope, and aggregation of these results to give the

final count. The key challenges faced are:

• Making the algorithm generic and therefore applicable

for a wide range of strength training exercise. The

algorithm needs to be robust to handle different kind

of movements involving varying amplitude, frequency

of signal and complex peaks per repetition.

• Each user performs a given exercise differently, leading

to wide variety not just across exercises but also across

users.

• Availability of limited resources in terms of mem-

ory and processing capabilities make it challenging

to design a system that is responsive and accurate

simultaneously.

The rest of the paper is organized as follows. Section

II reviews previous work related to repetition counting and

exercise tracking. Section III outlines our algorithm. Results

of simulated and real tests have been presented in Section
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IV. Section V describes the Maxxyt device. Section VI con-

cludes the paper, whilst describing the proposed extensions

to the current work.

II. RELATED WORK

The most relevant previous work is that of Chang et

al. [2], who address the problem of counting repetitions

using two different approaches. First approach utilizes peak

detection with an appropriate order of low pass filter. In

techniques based on peak detection, complex peaks with

more than two peaks in a single repetition disrupt the net

count and it suffers from the problem of double counting.

Treating the signal with appropriate order of low pass filter

removes the complex repetitions. Their second approach

models the problem as an HMM (Hidden Markov Model) to

extract fixed set of shapes and then counting them. The first

approach gives low miss count rate of 5%, however finding a

correct order of low pass filter is tricky, an order that works

well for an exercise doesn’t necessarily suit another exercise.

There is no notion of appropriate appropriate global order,

which limits the approach to only a limited set of exercises.

The second approach involves training a counting version

of HMM for each exercise, making it non scalable and only

manages a miss count rate of 10%. Maxxyt uses an approach

similar to their first approach where the problem of double

counting in complex repetitions is partly solved by blur filter

and partly by the aggregation module. Maxxyt has a low

miss count rate of 4.3% and is completely independent of

the exercise analysed, thus making it highly scalable and

generic.

In another work by Morris et al.[1], the result of counting

repetitions relies on accurate segmentation and recognition

of exercise. Their technique rejects peaks based on the

minimum and maximum reasonable times needed for one

repetition for the exercise recognized. We believe that repe-

tition counting should be independent of exercise recognition

for it to be a scalable system. Reliance on recognition

makes the system less responsive and deteriorates the user

experience. We achieve counts that are accurate to ±1
repetition 95% of time and ±2 repetition 98% of the time

compared to their within ±1 accuracy of 93% and within

±2 accuracy of 97%.

An indirect comparison can also be made with the al-

gorithms used for movement detection (i.e. starting and

ending of any movement). This is because repetition count-

ing involves detecting the start and end of any repetitive

action (step during a walk or any movement in general).

Specifically, work done by Jan Machek et al. [3] provide

two unique algorithms for movement detection by locating

the changes in the starting and ending of a movement from

the accelerometer data. They use second differentiation,

points of inflection, cumulative sum and peak detection

in their algorithms. However, they limit their model by

using experimental thresholds for the size of left and right

neighborhoods of point of inflection as well as multiplication

constant. This makes them less robust and involves a large

working window size making the model unsuitable for real

time scenarios.

III. THE ALGORITHM

The repetition algorithm is divided into three main phases

viz Pre-Processing, Peak detection, Aggregation. The data

gathered from the sensors is divided into windows of small

size each consisting of only 25 data points. All the three

phases are applied to each window. There is 10% overlap of

data points from the previous window to maintain a smooth

transition. The number of peaks detected in each window

is added to the results of the previous window [along each

axis] and aggregation is applied on these incremental results.

The repetitions are computed along 6 axes: x, y and z axis

for both accelerometer and gyroscope.

Our technique allows the device to function with high

accuracy even with window size as small as 25 data-points

which are accumulated in about 2 seconds. Such small

window size enables the device to be very responsive and

give continuous feedback. A detailed description of our

algorithm is given below.

A. Preprocessing

It is necessary to smoothen the data gathered from ac-

celerometer and gyroscope sensors to remove spurious peaks

that may interfere in the peak detection phase. Hence, it

leads to the elimination of false peaks that do not correspond

to an exercise repetition.

1) Comparison of Smoothing Techniques: A number of

data smoothing techniques are readily available for noise

reduction/removal. We experimented with several techniques

namely blur filters (i.e. moving average filters), simple

integration, Runge-Kutta integration [11], and median filters.

Blur filters reduced abrupt noise and brought out an ob-

servable difference between the peak and non-peak values.

Median filters eliminated abrupt noise in the signal, how-

ever blur filters performed better. Runge-Kutta integration

eliminated noise better than any of the other techniques, but

almost flattened out the entire signal and the calculations

involved large numbers that are computationally intensive.

Blur filter is employed in our application as it clearly

outperforms other techniques for getting a smooth signal

as seen in Fig. 1.

B. Peak Detection

Smoothing of data is followed by detection of peaks

corresponding to each repetition in an exercise.The ideal

peak detection algorithm should work with varying am-

plitudes and frequency.We developed a novel technique

where a global maxima[or minima] is declared a max-

imum[minimum] peak if it is δ larger[smaller] than the

neighborhood values. We declare the maximum[minimum]

138



Figure 1. Smoothing Comparison Results

value till now as a peak, if there exists some data point

which is δ less [more] than it. Once a maximum[minimum]

is declared, the maximum[minimum] till now is refreshed to

a very small[large] value.

The δ is appropriately learned with time and hence adapts

to the varying amplitude across signals. The learning process

is governed by the following equation.

δnew = α(prevMax− prevMin) + βδold (1)

In the above equation, α and β are empirically tuned

constants, and prevmax and prevmin are the previous

maximum and minimum respectively.

All the smoothing and peak-detection operations across

windows with little overlap between consecutive windows.

A simulation of our algorithm with varying windows sizes

helped us decide an ideal window size of 25 data points

which is equivalent of 2-3 seconds.

C. Aggregation and Combining Rep Counts

The peak counting algorithm is applied separately to the 3

gyroscope axes and 3 accelerometer axes generating a total

of 6 repetition counts. These repetition counts, are combined

along with empirically determined rules rules in a novel way

to get the final repetition count. These rules are based on the

following observations:

• In most instances our peak detection algorithm [for

each individual axis] counts exact number of repetition

or more.

• It often counts additional peaks due to noise in the

signals at the beginning and end of the exercise for

some axes.

• Sometimes, when an axis has multiple peaks for a

single cycle of exercise the peak detection algorithm

gives the rep-count which is near integer multiple of

actual count.

• In some cases, repetition counts from 2 or more axes

coincide with each other and also with the actual count.

• For a given exercise, either the gyroscope signals and

the corresponding rep-counts are good enough for final

TABLE I
OVERVIEW OF EXERCISES AND RESULTS.

Exercise No. of Total Total

Sets Total Sets RepCount Miscount

Cable Row 15 154 13

Inverted fly 15 152 6

Hyperextension 24 336 9

Leg raise 17 274 8

Pulldown 17 176 8

Fly 4 26 2

Bench Press 4 27 2

Bent over row 4 26 0

Total 100 1171 48

result or the accelerometer signals and its correspond-

ing rep- counts.

We build upon these observations to develop a simple yet

novel technique, constructing an if-else ladder. It utilises (i)

consensus among the rep-count values from different axes,

(ii) standard deviation in the rep-count values from gyro-

scope (iii) standard deviation in the rep-count values from

accelerometer (iv) ratio of rep-count values to determine

near integer multiple to detect multiple peaks in single cycle

of exercise and (v) mode (smallest if not unique) of the rep-

counts to map the 6 rep-count values to a single value and

feedback it to the user.

IV. RESULTS

Our experiments included 100 sets of exercises performed

by multiple users comprising of 8 distinct type of exercises.

These exercises were performed in a typical gym. An brief

overview of all the exercises and their corresponding results

can be seen in Table I.

In order to select an ideal window size for the 3 phases

mentioned in the algorithm section, we experimented with

window size varying from 5 to 100 and calculated the

corresponding accuracy. This experiment was really crucial

as window size determines the device latency to compute

the result. There were two types of accuracy that were

calculated, one within an error of ±2 repetition and other

within error of ±1 repetition . This means that if the rep-

counts calculated for a particular exercise set from the device

is within an error of ±1 [or ±2], it is considered as accurate.

We chose a window size of 25 as it clearly gives the highest

accuracy in comparison to others [Fig 2]. This was a major

factor in increasing the responsiveness of Maxxyt.

We also compared our results against the results of [1]

and [2] in terms of accuracy, which are tabulated in Table

II and in Table III. Since the number of sets of exercises,

the type and the number of repetitions were very different

in both these papers, we collected data over a large number

of exercise sets. The ground truth and the repetition count
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Figure 2. Simulated plot of accuracy [within ±2 and ±1] vs the response
time (which directly depends upon the working window size)

TABLE II
AVERAGE MISCOUNT RATE IS RATIO OF ABSOLUTE ERROR TO ACTUAL

REP-COUNT

Approach Used Average Miscount Rate

Chang et al. 0.106

(without HMM)

Chang et al. 0.057

(with HMM)

Maxxyt 0.043

TABLE III
FRACTION OF SETS (100 SETS IN OUR STUDY AND 160 SETS IN [1])

THAT ARE COUNTED EXACTLY ±1 AND ±2.

Approach Exact Within 1 Within 2
Used

Reco fit[1] 0.5 0.97 0.99

(Actual boundaries)

Reco fit[1] 0.77 0.93 0.97

(Segmenter)

Reco fit[1] 0.7 0.93 0.97

(Training Data)

Maxxyt 0.61 0.95 0.98

was collected by the device for 100 sets of exercises,

distributed over different type of exercises viz. Seated Cable

Row, Inverted fly, Fly, Hyperextension, Leg raise, Pulldown,

Bench Press and Bent over row. Each set of of every

exercise had number of repetitions varying from 5 to 35.

The accuracy results are listed in Table I. We compare the

average miss count rate of [2] with our work. [2] lists the

miss-count rate for each exercise separately using different

order of low pass filter. We take the average over all of

them and use it for comparison. In a different approach, [2]

uses a counting version of Hidden Markov Model. It can

be seen that we completely outperform [2] in both cases.

We perform 59% better in terms of average miss count rate

when compared to peak detection in [2] and 24% better than

peak detection with HMM[2]. We compare the accuracy of

[1] with our work in terms of exact count ±1 and ±2. [1]

have calculated three different accuracies corresponding to

the actual boundaries (in which the human oracle marks

the beginning and end of the exercise in the test data),

boundaries from Segmenter (which uses trained Segmenter

to mark the beginning and end of the exercise in the test

data), and training data (which corresponds to the training

error). We get comparable results to [1] when compared

using Actual Boundaries, as in Table III. Since the user

marks the beginning and end of the exercise by the press

of a button on Maxxyt, comparison with accuracy of Actual

Boundaries in [1] is the most representative.

V. THE DEVICE

Maxxyt has the form factor of a large wristwatch, and is

worn on the hand while performing an exercise. Its design

can broadly be organized into two subsystems - the I/O

subsystem and the controller subsystem. The former takes

care of measuring the motion and orientation (pose)of the

device in three-dimensional space and displaying output,

while the latter implements algorithms for counting repe-

titions, managing I/O, and related tasks. The device was

powered by a low-power Lithium-ion battery.

Figure 3. Maxxyt Prototype Device

A. The I/O Subsystem

In order to track the users orientation and motion, MPU-

6050, a 3-axis accelerometer and a 3-axis gyroscope is used.

It transmits to the controller the acceleration and angular

velocities of the user at a fixed sampling rate. The sampling

rate is determined experimentally and is implemented by

sending an interrupt signal on the I2C bus connecting the

controller and the MPU-6050. It is ensured that this signal

is sent at uniform intervals by using a timer. Apart from

the MPU-6050, this subsystem consists of an OLED display

in order for the user to view output, a vibra motor which

buzzes once for every two repetitions, an on/off switch, and

another microswitch that is used to start and stop repetition

counting. It also has an SD card for storing exercise data and

the intermediate results that the algorithm computes, which

is essential for enhancing the performance of the algorithm.
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B. The Controller Subsystem

The controller used is an Arduino compatible microcon-

troller, which is a tiny, WiFi capable ARM microcontroller,

with a main memory of 4 KB, and a flash memory that

can hold programs of size upto 32KB. It can connect to a

standard IEEE 802.11 b/g/n wireless access point, and serves

two main purposes. First, it serves as the controller that takes

in sensor readings, processes them, and displays results to

the user, whilst maintaining timers used for sampling and

synchronization of I/O. Second, at the end of an exercise,

relevant data is stored on the SD card and transmitted to a

server where the output can be analyzed better.

C. User Experience

Since Maxxyt is wearable and small in size, it gives

optimal experience to user by giving continuous feedback to

the user even when he is performing the exercise. It has no

constraints in terms of device orientation and external device

requirement, and is completely autonomous. Such features

in our device are due to simple yet unique calculations

in our algorithm that takes minimum amount of memory,

storage space and computational power to calculate the final

result. Moreover, Maxxyt provides continuous haptic and

visual feedback to the user for motivation before and after

completion of exercise. All the exercise data and results can

be transmitted in real time to the cloud for post workout

analysis as well.

VI. CONCLUSION

From the different experiments conducted and their results

shown above, we can conclude that the device is responsive

with a latency of only 2-3 seconds and generic as it handles

variety of exercises without any prior training. It achieves

higher level of accuracy in comparison to existing techniques

for counting repetitions and tracking exercise. Moreover, the

wearable device gives continuous haptic and visual feedback

to the user for enhanced user experience.
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