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Abstract — In this paper, we present a new technique for low 
resolution face recognition using Hu Li moment invariants. 
The new technique can handle the issue of low resolution 
images very efficiently by the virtue of thermal face 
characteristics. The new technique will be tested on a new 
database comprising of images of different expressions, and 
were taken within different time-lapse. Experiments have 
resulted to almost consistent recognition rates. The proposed 
technique offers outstanding discriminability and performs 
efficiently, with an average recognition rate of ~94% over the 
various resolutions. 
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moment invariants. 

I. INTRODUCTION 

Visible-spectrum images have high variability because 
they are produced by reflection in surfaces, which has 
strong dependence on luminosity and spatial distribution of 
the light sources which usually have strong differences in 
time. Light reflected from human faces also varies 
depending on the skin colour of people from different ethnic 
groups. This variability, coupled with dynamic lighting 
conditions, may cause great difficulties in recognizing the 
face in applications such as outdoor surveillance tasks [1]. 

Recently, researchers have investigated the use of 
thermal imagery for face recognition with good results. The 
advantage gained from working with the Infrared (IR) 
imagery type of sources is that the eye is not sensitive in this 
range, and illumination can be used in a more flexible way. 
The anatomical information imaged by infrared technology 
involves subsurface features believed to be unique to each 
person. Also, the IR face recognition, being not vulnerable 
to facial skin and expressions, can eliminate the drawbacks 
of face recognition in visible light. 

Although a great deal of work has aimed at developing 
robust face recognition algorithms, relatively limited work 
has focused on adapting the technology to applications 
where the face image is characterized by its low resolution. 
Most of the current algorithms for face recognition do not 
consider images of low resolution that commonly exist in 
real life applications [2]. Apparently, high resolution images 
can be available in labs or in well-controlled environment. 
But when it comes to real situations, things become more 
complicated and turn out it need more practical handling.  

In this paper, we present a new technique for low 
resolution face recognition using Hu Li moment invariants. 
Moments invariants offer robustness against variability due 
to the changes in regions of the objects. To the best of our 
knowledge, no work has discussed low resolution situation 
in thermal domain. The organization of the paper is as 
follows. A brief literature review is given in Section 2. 
Section 3 furnishes the mathematical background of the new 
method. The experimental results are discussed in Section 4. 
Finally, the paper is brought to a conclusion in Section 5. 

II. LITERATURE REVIEW 

Despite the great advances in the field of research, face-
based identification still poses many challenges. In recent 
years, researchers started investigating the thermal imagery 
for face recognition. In thermal imagery of human tissue, 
the major blood vessels have weak sigmoid edges. This is 
due to the natural phenomenon of heat diffusion, which 
means that when two objects with different temperatures are 
in contact (e.g. vessel and surrounding tissue), heat 
conduction creates a smooth temperature gradient at the 
common boundary [3].  

Authors in [4] proposed an approach using wide-baseline 
matching of face vascular networks obtained from thermal 
images. The vascular networks are obtained through skin 
segmentation and morphological operators. The image 
matching stage uses SIFT descriptors for verifying 
correspondences and generating a final geometrical 
transformation that relates the vascular networks. 
Furthermore, the general parameters for the Gaussians 
cannot be obtained, as they depend on the response of the 
particular camera to thermal intensity. The authors have 
reported a best recognition rate of 95.7% for a small 
database that consists of 156 thermal images.  

A combination of principal component analysis 
technique and a Bayesian Maximum Likelihood for thermal 
face image classification was proposed in [5]. The Bayesian 
approach uses a probabilistic measure of similarity based on 
a Bayesian Maximum Likelihood analysis of image 
differences. In this work, the authors have developed 
nonlinear technique for multispectral face recognition. 
However, most of the obtained results were poor. Bayesian 
face recognition needs a sufficient number of face images 
for intrapersonal learning process and if the number of these 
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images is low then the system performance will be 
inefficient. 

Oz and Khan [6] found that variances in thermal 
intensity values recorded at facial thermal feature points can 
help classify intentional facial expression by using 
multivariate tests and linear discriminant analysis. Trujillo 
et al. [7] proposed localizing facial features in thermal 
images by detecting interest point and using clustering 
approach.  

In [8], a co-transfer learning framework is proposed in 
which knowledge learnt in controlled high resolution 
environment is transferred for matching low resolution 
probe visible images with high resolution gallery. The 
proposed framework combines transfer learning and co-
training to perform knowledge transfer by updating 
classifier’s decision boundary with low resolution probe 
instances. The proposed co-transfer learning framework is 
applied on support vector machine (SVM) classifiers.  

Wu et al. [9] presented convolutional neural network 
(CNN) architecture for thermal face recognition. CNN is a 
new type of neural network method which can automatically 
learn effective features from the raw data. Bi et al. [10] 
combined multiple features in thermal face characterization 
for face recognition. They designed a systematical way to 
combine four features, including Local binary pattern, 
Gabor jet descriptor, Weber local descriptor and Down-
sampling feature. Experimental results show that their 
approach outperformed methods that leverage only a single 
feature and is robust to noise and occlusion.  

Vigneau et al. [14] analyzed the problems produced by 
temporal variations of infrared face images when used in 
face recognition systems. The temporal variations present in 
thermal face images are mainly due to different 
environmental conditions, physiological changes of the 
subjects, and differences of the infrared detectors' 
responsivity at the time of the capture, which affect the 
performance of infrared face recognition systems. Authors 
created two thermal face databases that include capture 
sessions with real and variable conditions. They also 
proposed two criteria to quantify the temporal variations 
between data sets. The thermal face recognition systems 
have been developed using the following five methods: 
local binary pattern, Weber linear descriptor, Gabor jet 
descriptors, scale invariant feature transform, and speeded 
up robust features.  

Liu and Yin [15] presented a new descriptor for 
spontaneous facial expression recognition from videos 
acquired by a thermal sensor. Thermal imaging can measure 
autonomic activities, which are the physiological changes 
evoked by the autonomic nervous system regardless of the 
variety and ambiguity of facial appearances. To get the local 
energy and temperature changes, authors proposed to use 
spatio-temporal orientation energy and acceleration of dense 
trajectory as low level features improve the discriminative 
capacity by aggregating the local feature using an improved 
fisher vector. 

As we see from above brief discussion, the works 
tackling low resolution aspects of face images are mainly 
within the visible domain, not the thermal. The attempts to 
explore the potential of thermal face features in recognizing 
low resolution images are rare, if any. The next section 
shows how the new method can handle the issue of low 
resolution images very efficiently by the virtue of thermal 
face characteristics. 

III. HU LI MOMENTS 

The proposed method describes the thermal face images 
by a set of measurable quantities called invariants. These 
invariants are insensitive to changes that can convey enough 
discrimination to distinguish faces belonging to different 
classes. We represent each face by a n-dimensional vector 
space called feature space or invariant space.  

Invariance to translation can be achieved by shifting the 
class such that its centroid coincides with the origin of the 
coordinate system. In this case, we have the central 
geometric moments 

 

 
(1)

where f(x, y) is the image function and M, N are image 
dimensions, and  = m10/m00,  = m01/m00 are the coordinates 
of the class centroid.  

It is important to choose the proper class of invariants 
with respect to expected image degradations and, 
eventually, take into consideration a method for the moment 
computation acceleration depending on the type and amount 
of data to be analysed [11]. Scaling invariance is obtained 
by proper normalization of each moment. Since low-order 
moments are more stable to noise and easier to calculate, 
researchers normalize most often by a proper power of μ00 

 
(2)

 
(3)

where  is called normalized central geometric moment. 

In this regards, Hu invariants [12] attract the greatest 
attention for the object description and consecutive 
classification. Rotation moment invariants were first 
introduced by Hu, who employed the results of the theory of 
algebraic invariants and derived his seven famous 
invariants. The equations are given in (4–10) below. After 
Hu, various approaches to the theoretical derivation of 
moment invariants were published. Among those published 
works was Li [12] who used the Fourier-Mellin transform to 
derive invariants. He added five more equations to Hu 
equations, shown in (11–15) below. We describe every 
thermal face image with a feature vector consisting of these 
12 invariants given in equations (4–15). In other word, for 
any feature vector say a, it is constructed in following way:  
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a . 
The Euclidean distance given in (16) is used as the system 
classifier, for vectors a and b both of d dimensions. 

 

 

 (4) 
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IV. EXPERIMENTAL WORK 

We have built a database consisting of 1500 frontal 
images for 20 different subjects taken in different sessions. 
We used the Infrared Camera ETIP 7320 which includes 
thermal infrared imaging radiometer using a micro-
bolometer 320×240 focal plane array and a Vanadium 
Oxide technology base. Participants were asked to express 
three different emotions with their faces: neutral, anger, 
and smiling. 

In order to test the system performance under practical 
situations, we have created four different space resolutions 
from the original 300 frontal images. More specifically, we 
evaluate the technique on images with four different 
resolutions of probe thermal images, beside the original 
high resolution images. The original high resolution 
images are of size 180×160. Images at a particular 
resolution are obtained by down-sampling the original 
images to the required resolution (namely, 90×80, 45×40, 
22×20, and 18×16). We end up with 5 space resolutions × 
300 images per resolution, giving a total of 1500 images. 
All subsets contain random images with eyeglasses. That 
is, we have images with eyeglasses at different resolutions 

(both in the training set and testing set). We refer to a 
90×80 image as an image of 0.5 resolution, as the original 
(high) resolution image size 180×160 has been down-
sampled by 50% (half) of its rows and columns. Similarly, 
the 45×40, 22×20, and 18×16 have been referred to as 0.25 
(quarter), 0.125 (one-eighth), and 0.1 (one-tenth), 
respectively. Examples of images at various resolutions are 
shown in Figures 1–5. 

The face image is first divided into components where 
the local characteristics and features are combined together 
using a certain fusion method. Each moment is trained on a 
determined cluster (component) of thermal images in the 
training database. Then, the local features are combined at 
a second stage to decide whether the input face image 
belongs to a given class. In our work, the image is divided 
into 16 equal-size and non-overlapped components. The 
results obtained from the similarity measures from the 
feature vectors for the different components are fused 
together using “voting” fusion to achieve the final 
similarity score. Fig. 6 shows an example of a 16-
component thermal image at 0.25 resolution. The 
corresponding 3D temperature distribution for the 16 
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components is shown in Fig. 7. Fig. 8 shows the 
performance of the proposed technique. As the results 
reveal, the technique has shown impressive and stable 
performance with an average recognition rate of ~94%. 

 

 
Fig. 1. An example of an original high resolution face image. 

 

 
Fig. 2. An example of a face image of 0.5 resolution corresponding to the 

class of the image shown in Figure 1. 

 

 

Fig. 3. An example of a face image of 0.25 resolution corresponding to 
the class of the image shown in Figure 1. 

 

 
Fig. 4. An example of a face image of 0.125 resolution corresponding to 

the class of the image shown in Figure 1. 

 

 
Fig. 5. An example of a face image of 0.1 resolution corresponding to the 

class of the image shown in Figure 1. 

 

 
Fig. 6. An example of a 16-component thermal image at 0.25 resolution. 

82



 
Fig. 7. An example of a 3D temperature distribution corresponding to 

Figure 6. 

 
Fig. 8. Recognition rate vs. image resolution. 

V. CONCLUSION 

In this paper, we presented a new technique for low 
resolution face recognition using Hu Li moment invariants. 
The new technique can handle the issue of low resolution 
images efficiently by the virtue of thermal face 
characteristics. As the results reveal, the technique has 
shown impressive performance with an average 
recognition rate of ~94% at the various resolutions. Our 
future work will consider implementing the technique over 
images of different poses at various resolutions. 
Comparison with other moments invariants techniques will 
be considered as well.  
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