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Abstract—An ideal binary mask is a means by which
multiple sound sources within a single audio file can be
separated. Previous work has shown a deep neural network can
be trained to approximate the ideal mask, but at a substantial
computational cost. We present a method to assess the impact
of reducing the mask by averaging time and frequency bins,
so that the computational cost can be significantly reduced.
Our work uses the original separate musical channels mask
as a ground truth and compares this against an ideal binary
mask and an ideal “’soft” or proportional mask. The ideal soft
mask is then compared against masks produced by a range
of averaging levels. We find that averaging could produce
a reduction by a factor of 16 in the number of weights in
the neural network (and thus a significant improvement in
computation time), while still achieving plausible results in
terms of source separation.
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I. INTRODUCTION

Multitrack audio recordings have provided studio engi-
neers with fine control over post production for many years.
With many studios now digital (for cost and convenience
reasons), a large proportion of modern pop music is recorded
with tens of individual sources. However, many of the
outputs are exported as a single track, the original sources
remaining under lock and key in the mixing engineers
editing booth. This is particularly unfortunate, as an increas-
ing number of consumers now have access to affordable
advanced audio editing software and hardware, with the
potential to take advantage of these digital recordings in
novel ways.

One of the most common questions asked by the con-
sumers is how a vocal portion of a mix can be isolated
from the instrumental. Consumers desire to do this for two
primary reasons: either to use the instrumental as a karaoke
style backing, or more commonly, to create ‘remixes’ of
their own by overlaying vocals on new instrumental beds.
This is an example of signal source separation: isolating
and recovering specific signals which have been mixed into
a single combined source. The ultimate aim is to recover
the original component without interference or noise from
other combined sources. In audio signal processing, this is
an example of the ‘cocktail party’ problem [1], [2] whereby
multiple voices are captured simultaneously. The human
ear is remarkably good at isolating these voices, using
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gender, spatial information, amplitude and other factors for
separation. Attempting to reproduce this using digital signal
processing is much more difficult, with multiple approaches
tackling different variants of the problem.

This paper explores means by which a recent strategy for
addressing this problem could be optimised to achieve the
goals within more reasonable computational costs. Section
II discusses various techniques that have been applied to the
cocktail party. Section III explains the motivation behind
the current work, and how it uses the data from the original
method to work out the possible impact of optimisation on
the outcomes of the neural network. Section IV presents the
results, the way in which they are assessed and analyses
their quality, while suggestions for further exploration are
covered in section V.

II. PREVIOUS WORK

Separation of multiple sources within an audio signal has
been attempted by a variety of means. For example, Non-
negative matrix factorisation (NMF) considers the original
combined signal as a matrix, and tries to find two smaller
matrices that can be multiplied together to give a good
representation of the original signal [3]. However this has
problems where the signals do not form well-separated
clusters (i.e. have some overlap). Grais et al [4] and Kang
et al [5] advanced on this by using different deep neural
network approaches in conjunction with NMF.

A somewhat different strategy is the development of the
‘ideal binary mask’ approach. This was first suggested in
2001 by Hu and Wang [6]. It has been argued that the ideal
binary mask approaches the SNR performance of the ideal
ratio mask, and thus is close to the theoretically optimal
Weiner filter [7]. The ideal binary mask has since been ex-
plored extensively, most noticeably in the area of improving
the intelligibility of speech within a noisy environment [8],
[9]. Simpson et al [10] used the ideal binary mask to train
a deep neural network on the cocktail party problem. They
found that the deep neural network is capable of separating
out vocal parts from a musical mixture, and that it has the
advantage of being able to learn what ‘vocal’ sounds consist
of.



III. EXPERIMENTAL METHOD

Simpson et al [10] used a neural network of 3 layers with
a size of 1025 x 20 each. This produces some 840 million
nodes and over 1 billion parameters - which constituted a
significant computational load for training: in private com-
munication with the authors, they indicated that “training
takes about a month on a big single core server”. [11] Several
studies have highlighted calculation time as a limiting factor,
often choosing to process only a small subset of test data as
a result. It is clear that this would be a major impediment
to any real-world application [12]. Our aim is therefore to
assess the ways in which the computation time could be
shortened by reducing the number of input and output nodes
in the neural network. The object of the present work is to
examine the effect of this reduction on the resulting sound
quality.

Our starting hypothesis is that a perfectly performing
neural network would, after training, produce an output that
is indistinguishable from the ideal binary mask. We therefore
consider the ideal binary mask (that would be used to train
the neural network) as the best possible output that could
be achieved by applying the ‘perfectly trained’ network to
a new piece of music. We generate this ideal binary mask
from the composite, instrumental and voice tracks as was
done in ‘Deep Karaoke’. We then generate our optimised
masks from the same tracks directly. This produces the
equivalent of a fully trained neural network working with the
reduced input, hidden and output nodes. We then reconstruct
the separate instrumental and vocal tracks by applying the
masks to the original composite track. This produces 2 sets
of separated tracks - one from the ideal mask, and one from
our optimised mask. We then compare the outputs from
these two processes to assess the quality of the masks. We
report both objective measures (e.g. signal to noise ratios)
and subjective assessment. The results of these experiments
thus produce an upper bound on the quality that could be
achieved by the reduced size neural network, in that the
optimised maps thus constructed are what a perfectly trained
neural network with a reduced set of nodes could achieve at
best. This experimental process is illustrated in Figure 1.

As in Simpson [10] the generation of the ideal binary
mask was achieved by windowing and Fourier transforma-
tion to produce a spectrogram containing 20 time-windowed
samples, each containing 1025 frequency components. The
magnitudes of the source (vocal, instrumental) parts were
then compared with the corresponding magnitudes in the
mix spectrograms, generating a 1 where the vocal magnitude
was greater, or 0 if the backing magnitude was greater, thus
producing an ideal binary mask of 20 x 1025 elements. Phase
information was not used in the mask generation process.

For the generation of the optimised masks, a similar
process was applied. To reduce the number of nodes in
any neural network, it would be necessary to reduce the
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Figure 1. Experimental process of constructing masks for comparison

frequency points and/or the time samples. Our experiments
covered reducing the original 1025 frequencies to 512, 341,
256, 205, 170 and 128. The number of time samples was also
reduced from 20 to 10, 5 and 2. In each case the input data
was calculated by simple averaging (over frequency groups
or time intervals) and the output (mask) value was used
repetitively across multiple samples. The Fourier transforms
that constructed the samples and reconstructed the audio
afterwards always used the full resolution and the phase
information.

IV. RESULTS AND ANALYSIS

The results of this type of exercise can be assessed in
two ways. The simplest approach is to use objective criteria
based on signal to noise ratio. However it is well known
in this field that such an approach is not adequate. In fact
the relationship between subjective and objective assessment
has formed a substantial field of study in its own right, for
example [13]. Unfortunately to perform a full subjective
assessment is a substantial undertaking so, for simplicity,
we will present objective results based on signal to noise
ratio supported by our own subjective assessment.

To generate our results, 7 musical mixtures were first
chosen from the Medley DB library [14]. They were selected
for their difference in genre and style, including pop, rock
and indie within the test set. This was to evaluate the ef-
fectiveness across audio with differing number of stems and
styles. Each track was reduced to 60 seconds in length and
converted to mono for the purpose of simplicity; reduced in
gain by -3db to avoid overshoots (importantly not normalised
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Figure 2. Distinct SNR improvement achieved by binary mask over using
using a proportional or “soft” mask, both at full 20 x 1025
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Figure 3. Signal to noise ratio of reconstructed data at full 20 x 1025
compared to original

to retain original stem balance); and then mixed down to
produce 3 individual parts, from now on referred to as
“vocal”, “instrumental” and “mix”. Each part was exported
as PCM, uncompressed WAV with 16 bit depth at a 44100Hz
sample rate. This produced 3 parts for each of the 7 test
musical mixtures, which were passed through the application
to generate various levels of averaging. Generated files were
then imported into the Audacity application. The original
vocal and instrumental tracks were inverted and mixed with
the equivalent vocal or instrumental generated from the full
20 x 1025 mask. The ratio of the RMS of this mix with
the original represents the best achievable SNR assuming a
perfectly generated mask at the full resolution.

In [10] the neural network output was a “soft” mask
with vocal and instrumental contributions for each time-
frequency bin being real numbers in the range 0-1. However
they introduced a parameter « that acted as a cut off in
order to construct a binary mask. Initially we tried using
a binary mask with a value of o = 0.5 and compared the
result with direct use of the original soft mask. The relative
signal to noise ratio (SNR) of the two different approaches,
each compared to the original ground truth data, is shown
in Figure 2. It can be seen that the binary mask shows a
considerable improvement over the soft mask. However a
subjective assessment of the sound quality produced exactly
the opposite result. The binary mask produced an “underwa-
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Figure 4. Mean vocal SNR for all musical mixtures, samples (time) vs
frequency bins
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Figure 5. Mean instrumental SNR for all musical mixtures, samples (time)
vs frequency bins

ter” sound that was audibly quite unpleasant. The authors of
[10] performed an optimization procedure to determine the
value of . We have to assume that this procedure would
have eliminated this effect. For simplicity we decided to
generate the remainder of our results for the soft mask only,
partly because of the better subjective quality, but also to
avoid the need to re-optimize « for every combination.

To isolate the effects of the averaging procedure we
compare the averaged results, not with the original ground
truth, but with the data generated at the maximum of
20x1025. The reference against which the rest of our results
are compared is thus the 20 x 1025 soft mask output. The
SNR of this output against the original ground truth is shown
in Figure 3.

Using this reference, the same process was then repeated
for multiple levels of averaging. The resulting SNR repre-
sents the degradation that results from the averaging process.

Results are reported as SNR relative to 0dB full scale. A
SNR greater than 20db is desired when the separated audio
is to be listened to as a standalone. However a lesser SNR
may be acceptable when the other part is to be re-introduced
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Figure 6. Averaging time samples impacting the vocal SNR for each

musical mixture (1 - 7)
= 18 ‘
g ‘
. \
12 ‘
10 ‘
. \
. \
x20 x10 x5 x2
Time Samples

Figure 7. Averaging time samples impacting the instrumental SNR for each
musical mixture (1 - 7)
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in a new mix.

Figures 4 to 11 show our results for signal to noise ratio
for different levels of averaging. The results shown in Figure
4 and Figure 5 summarise the performance of all the test
musical mixtures combined, and give a good indication of
the average SNR that can be achieved by changing our
control parameters (i.e. the number of time samples and
frequency bins). They show that reducing the number of
time samples from 20 to 10 has very little impact on the
SNR achieved, and even at worst (i.e. 20X vs 2x) there
was just 4dB of range in the generated vocal samples. In
the case of the instrumental samples (Figure 7) the SNR
average is much higher, and in the case of test track 6 the
SNR only falls from 24.4 to 22.8 even when the number of
time samples is reduced from 20 to 2.

The effect of averaging over frequencies appears to be
much stronger. These results show a clear and steady re-
duction in SNR at each level of frequency bin reduction,
reaching a SNR below 10dB in some cases. It can also
be seen that there are differences between the vocal and
instrumental parts. On average, vocal isolation offers a SNR
that is inferior by roughly 6dB to that obtained for the
instrumental part. This is to be expected, as instrumental
parts (typically formed of many layers) are much more
difficult to eliminate than the solo voice. This result was also
reinforced by subjective assessment since the human ear is
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Figure 8. Averaging frequency bins impacting the vocal SNR for each
musical mixture (1 - 7)
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Figure 9. Averaging frequency bins impacting the instrumental SNR for
each musical mixture (1- 7).

also very good at identifying things that sound out of place,
such that even the quietest ‘beat’ over a voice sample can
be easily distinguished. When this difference has been taken
into account the trend line for the two is extremely similar.
The small rise in SNR visible towards the lower frequency
bins of Figure 5 could be down to a more accurate reduction
factor (i.e. 1025/128 vs 1025/170).

Figures 6 to 9 show the same data broken down by track.
They illustrate the variation in performance that could be
expected if the technique were to be applied to different
pieces of music in different genres. It can be seen that test
track 1 shows particularly poor performance when trying
to extract the vocal; however the SNR is not as bad when
attempting to remove it and retain only the instrumental.

Therefore, given our target of greater than 20dB SNR, we
can now begin to balance the required weights of a typical
network with the approximate SNR that could be achieved.

If we assume a typical neural network configuration,
where the number of weights are proportionate to our
reduction factor, then Figure 4 shows that at 10 time samples
and 512 frequency bins, an average of 19.8dB SNR can
be achieved. This would reduce the network input / output



dBFS
5

Duration (s)

——Sample RMS Noise Floor (Error) SNR

Figure 10. Vocal RMS, noise RMS and resulting SNR for test track 5, at
10 x 512 averaging over the 60 second duration
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Figure 11. Instrumental RMS, noise RMS and resulting SNR for test track
5, at 10 x 512 averaging over the 60 second duration.

size from 20 x 1025 (20,500) to 10 x 512 (5120). For
a simplified network, this would reduce the 840 million
(840,500,000) weights to 52 million (52,428,800). In the
case of instrumental parts, this can be reduced further. Figure
5 demonstrates that for a filter of 5 x 341, 21.1 dB SNR is
achievable. A typical ANN at this level of averaging would
require just 2 x (5 x 341)? weights, some 5.8 million. Of
course, the SNR values used in these figures are averages
across 60 seconds of audio, and the SNR at any single point
can fluctuate. To gain some understanding of how the SNR
changes through the duration of a musical mixture, Figure
10 and Figure 11 demonstrate the effects for test track 5
at 10 x 512 averaging, which performed particularly well.
It is clear that both parts largely maintain a SNR around
20dB when vocal and instrumental are mixed together, and
significant improvements when these parts are isolated (0-
10s and 30-35s).

V. CONCLUSIONS AND FUTURE WORK

The findings from this work demonstrate that is it possible
to optimise the deep neural network as used in the study
‘Deep Karaoke’ [10], by reducing the size of the mask
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used to train it. The extent to which this reduction can
be applied depends on the end user requirements, and
whether instrumental or vocal separation is required. In the
majority of cases however, a 50% reduction in time and
50% reduction in frequencies provides an acceptable result.
The original neural network was of size 2 x (20500)%. A
reduction as suggested would produce a network of size
2 x (5120)2. Given that the computational time for training
the original network was approximately one month, this
reduced network would be able to complete training in just
a few days on the same processor.

The next stage is to look at how these optimised masks
behave in a real neural network. Several issues could arise,
including the network not having enough data to be able to
accurately recognise patterns, and as such taking an infinite
amount of time to converge. Future work should also look
at improving the averaging method used on the ideal masks.
Currently this is a very crude approach, leaving orphan fre-
quencies in some cases. This can be significantly improved
by better mathematical functions and overlapping, and it is
hoped that this alone would add significant improvement to
the results. It is also noted that the method of comparison
(SNR) used in determining the results is not ideal. This can
clearly be seen where better SNR results are derived from
the binary mask analysis which subjectively sounds worse.
Many studies in the area of source separation use multiple,
more specific types of SNR to categorise their generated
samples, including signal to distortion ratio (SDR), signal to
interference ratio (SIR) and signal to artefact ratio (SAR). It
would be interesting to further analyse the generated samples
using these measures, in order to more accurately derive a
measure of performance.
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