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Abstract—In nanocrystallography, diffraction images are cap-
tured to gain insights into the structure of macromolecules. A
new generation of experiments is able to take a vast amount
of images in a short time. However, most of the images are not
suitable for further research. It is not feasible to store and process
all images in a reasonable amount of time. In previous work
we proposed algorithms able to distinguish useful from useless
data in photon science. In this article we propose and discuss
a prototype implementation of the algorithms including further
optimizations. We also consider its feasibility to cope with the
realtime constraints.
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I. INTRODUCTION

In nanocrystallography the inner structure of macromolec-

ular samples such as proteins are explored. In the process

of analysis, samples are crystallized and then illuminated

by an X-ray light source. Due to the high energy of the

laser flash, the samples are destroyed within femtoseconds.

Since many images with different orientations of the sample

are necessary to calculate a three-dimensional model of the

sample, a sample transportation system is used. The typical

setup of an experiment can be seen in Fig. 1. Samples are

transported by a liquid jet which crosses the X-ray laser beam.

The diffracted light is then captured by a detector device.

Fig. 1. Typical setup of a nanocrystallography experiment. [1].

One example for such an experiment is the Linac Coherent

Light Source (LCLS) in Stanford [2]. Here, data are taken

at a rate of 120 images per second. However, due to the

inability of synchronizing the light flashes with the stream of

probes, not all images taken are suitable for further research.

Depending on the experimental run, up to 96.4% of the data

taken are not suitable for further research [3]. This consumes

computational resources as well as storage space. In addition,

this practice is not feasible for next generation experiments.

The European XFEL experiment, for example, will be able

to generate up to 27,000 images per second [4]. Given this

high velocity, it will not be possible to store and process all

data in a short amount of time. Therefore, solutions have to

be found rejecting as many useless data as early and as close

to the detector as possible.

In previously published article, we explored algorithms

designed to categorize images (see Sec. I-A2) and identify

signals with respect to the specific characteristics of nano-

crystallography (see Sec. I-A3). The signals are called Bragg

spots and consist of small areas where a comparatively large

amount of light is registered.

In this article, we are proposing a prototypical implementa-

tion of a combination of both algorithms. The individual steps

and their implementation is discussed. We then explore the

recognition rates as well as the runtime behavior. Finally, we

propose a multi-step solution for handling the high data rate

of the European XFEL experiment in realtime.

A. Related Work

1) Cheetah: The Cheetah software [5] has been developed

to process data taken in X-ray diffraction nanocrystallography.

It is written in C++ as a library to be independent of the data

input format. Before the analysis of an image takes place,

individual characteristics of the detector used to capture the

data can be configured. Pixels can be marked as broken or

a custom offset can be set. Additionally, physical effects like

a water halo1 within the image as well as additional noise

around the beam hole can be set to be ignored. Cheetah

then searches for connected pixels above a preset threshold.

The signals identified are stored along with their coordinates

and intensity. Cheetah stores images as individual files in the

Hierarchical Data Format 5 (HDF5) [6]. An image is stored as

a matrix. Each component of the matrix holds a 14-bit integer

value representing the intensity registered by a detector pixel

(grayscale) [7].

1Circle of diffracted light by the transportation liquid of the stream of
probes.
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2) Neural Network as a Veto Engine: In our article ‘Neural

Network as a Veto Engine’ [8] we propose a neural network

able to reliably categorize data taken in nanocrystallography.

To categorize the data, three basic quantities are extracted

from the images. Those quantities are then used as an input

vector for a neural network. The networks output is the

likelihood of the suitability of the image for further analysis.

In addition, two image optimizations are introduced. Firstly,

background subtraction, which calculates an average noise

level of blank images and then subtracts it before processing

an image. Secondly, a new quantity has been introduced called

the ‘transverse intensity’. It represents a factor compensating

for the loss of photon intensity towards the outer areas of the

detector.

3) Clusterfinder: In the article ‘Localization of Signal

Peaks in Photon Science Imaging’ [9] we introduce a multi-

step algorithm able to detect signals within images from nano-

crystallography. The signal detection is implemented without

any knowledge of the physics. In the first step, random noise

spots are removed by applying a suitable convolution. In a

second step, edge detection is used to enhance signals even

further. Finally, connected pixels above a preset threshold are

identified recursively.

II. DATA & METHODS

A. Samples

To verify our results, diffraction images from three different

samples are analyzed. The samples are

• the protein Cathepsin B (CatB) [10],

• the 5-Hydroxytryptamine receptor 2B (5HT-2B) [11],

• the granulovirus polyhedron (GV) [12].

The images of the samples are provided as individual files in

the HDF5 format. No corrections or optimizations have been

applied beforehand.

B. Prototype

The workflow of our prototype is shown in Fig. 2. In the fol-

lowing paragraphs, the individual components are discussed.

1) Normalize Image: Since pixels of the detector can get

stuck or break, it is necessary to ignore them during analysis.

Therefore, all pixels outside the 14-bit unsigned integer range

(0 - 16,384) are set to zero.

2) Remove Single Pixel Noise: Throughout each image,

random noise is spread in the form of single bright pixels.

These are dampened using convolution. A small image kernel

is applied to each pixel. Typically, an image kernel is a 3× 3
or 5× 5 matrix. The convolution

I ′ = I ∗K (1)

is defined as

I ′x,y =
M ′∑
m=1

N ′∑
n=1

Ix−m+2,y−n+2Km,n , (2)

where I is the original, two-dimensional image and K repre-

sents the image kernel. In our case, the dimension of the image

matrix I is 1552× 1480. There are several ways to deal with

pixels at the border of images. In our case, the border area of

an image is very unlikely to contain any useful information.

Therefore, the limits 1 < x < M and 1 < y < N are applied.

To dampen this kind of noise, the image kernel

K =
1

9

⎛
⎝1 1 1
1 1 1
1 1 1

⎞
⎠ (3)

is used. Since the sum of the entries is 1, the intensity of each

pixel is distributed to its neighbors and no intensity is lost.

In view of a possible parallelization of this step, it has been

implemented in OpenCL running on a GPU rather than the

CPU. For each pixel, a separate work item (thread) is created

and processed by the GPU in parallel.

3) Calculate Basic Data: To classify an image a variation

of the neural network proposed in [8] is used. Only one

output neuron is used to express the likelihood of an image

being suitable for further analysis. Three basic quantities

are extracted from the image. In this step, the maximum

intensity Imax of a single pixel, the average intensity Imean,

and standard deviation ΔI of all pixels is calculated in one

iteration.

4) Calculate Neural Network Output: Once the three basic

data have been calculated, the weights of the trained neural

network can be applied to calculate the output of the network

for the image

Rating = S(Imaxw1 + Imeanw2 +ΔIw3 +w4) (4)

where S is the sigmoid function, which is defined as

S(x) =
1

1 + e−x
. (5)

w4 is attached to the bias neuron, which is set to 1. It is used

to improve the approximation of the neural network. An image

is considered as ‘useful’ if its rating value is above 0.5.

5) Apply Binary Edge Detection: Edge detection is applied

to images categorized as ‘useful’ by the previous step. The

shape of the signals in an image may vary. What they have

in common however is a rapid increase of intensity within the

range of a few pixels. This characteristic can be exploited by

applying edge detection. To detect edges in an image, convo-

lution is used as described in Sec. II-B2. Two asymmetrical

kernels are used to identify a sudden increase or decrease in

intensity between adjacent pixels. The kernels are

Sh =

⎛
⎝−1 0 1
−2 0 2
−1 0 1

⎞
⎠ (6)

and

Sv =

⎛
⎝−1 −2 −1

0 0 0
1 2 1

⎞
⎠ . (7)

They are known as the Sobel operator [13] and are applied by

ΔIx,y =

√(
I(noise reduced) ∗ Sh

)2
x,y

+
(
I(noise reduced) ∗ Sv

)2
x,y

(8)
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Fig. 2. Workflow of the proposed prototype.

where ΔIx,y is the gradient of the intensity of the pixel at the

coordinate x, y of the image I .

To separate signals from noise, a threshold has to be applied.

To conserve as many iterations in the following steps as

possible, thresholding is applied directly after edge detection.

Here, the step function

θthreshold(Ii) =

{
0, Ii < threshold

1, Ii ≥ threshold
(9)

is applied to each pixel, where Ii denotes the intensity of the

i-th pixel.

6) Remove Empty Grid: The detector is composed of

many individual panels [14]. Around each panel, a row and

column of zeros is recorded. This results in a rapid change in

intensity, which might trigger a false positive. To avoid this,

the intensities at the panel borders are set to zero. In addition,

all remaining pixels with the value 1 but without any adjacent

pixel are set to 0. This is done because once edge detection

has been applied, a single pixel can never represent a valid

signal.

7) Find Connected Pixels: In the last step, connected pixels

are detected using a recursive algorithm. Each pixel that has

been inspected is set to 0 to mark it as treated and prevent the

algorithm from considering it again.

III. RESULTS

A. Recognition Rates
To verify our prototype, 10 manually preselected images of

each sample have been analyzed. In a first step, we categorized

the images as ‘indexable’2 and ‘not-indexable’3 based on the

calculated output of the neural network. All images for which

we received an output value of > 0.5 were considered as

containing data. To these images, the modified version of the

clusterfinder algorithm is applied in order to identify all Bragg

Spots along with their coordinates and intensities. The spots

found were then compared to the ones found using the Cheetah

software (see I-A1). The results can be found in Tab. I and

II. The rather low amount of signals detected by our proposed

prototype is due to a conservative intensity threshold, ensuring

as few false positives as possible.

2Suitable for further research.
3Not suitable for further research.
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TABLE I
SPOTS FOUND IN INDEXABLE IMAGES

Total Spots Spots in Spots Spots

Found Common Cheetah Only Prototype Only

CatB 442 294 118 30

5HT-2B 465 190 207 68

GV 871 265 419 187

TABLE II
SPOTS FOUND IN INDEXABLE IMAGES

% Spots % Spots % Spots

in common Cheetah only Prototype only

CatB 67% 27% 7%

5HT-2B 41% 45% 15%

GV 30% 48% 21%

TABLE III
SPOTS FOUND IN INDEXABLE IMAGES

Total Spots Spots in Spots Cheetah Spots Prototype

Found Common Only (valid) Only (valid)

CatB 36 20 35 (3) 0

5HT-2B 52 44 22(15) 11 (6)

GV 95 21 51(33) 23 (8)

Besides the signals both algorithms found, each algorithm

detected signals the other one did not. To explore this behavior,

we took two images from each sample and verified the signals

manually. The results for these two images per sample can be

found in Tab. III. It can be seen that both algorithms find

additional valid spots as well as false positives. We found that

the false positives in case of the prototype are a result of

defective pixels within a panel and the high amount of noise

around the beam hole. Cheetah on the other hand identified

false positives mostly at panel edges and within the water halo.

In addition, we found that the valid spots identified by either

algorithm were almost exclusively very weak. Therefore, their

identification differs with respect to optimization handling.

B. Runtime

To benchmark the prototype, it has been compiled using Ap-

ple LLVM version 7.0.2 (clang 70.1.81) on Mac OS 10.11.3.

No compiler optimizations are used and the runtime is mea-

sured using the Apple ‘Instruments’ software. The software

is part of the Apple XCode IDE [15]. In Instruments, we

used the ‘time profiler’ instrument to determine the execution

time for each step. Each run of the application is performed

individually and the specified amount of panels of a single

image is processed in each run.

Fig. 3. Runtime of the prototype for different panel counts. The error bars
represent the standard deviation.

The execution time is measured once an image is loaded

into memory. The results of each step are written into a new

matrix. In steps involving the GPU for processing, the data

transfer between the host and GPU is recorded as well.

The average recorded runtimes can be found in Tab. IV

along with the standard deviation for each step. The runtime

is plotted in Fig. 3. The error bars represent the standard

deviation. The runtime, in general, is decreasing for fewer

panels. However, is is also visible, that the steps running on

the GPU are tending to saturate. This is most likely due to

the overhead of copying data between host and GPU. The

runtime of the other steps is decreasing almost linearly with

the inverse number of panels. The rather high runtime of the

‘Rate using Neural Network’ step might be explained by the

need for iterating over each pixel of the image and calculating

two sums in order to determine the average intensity and

its standard deviation. This is compatible with the observed

O(n2) behavior of the runtime. The technical specs of the

system the benchmark has been run on can be found in Tab. V.

The influence of the ‘Turbo Boost’ technology is not explored

in this article.

The amount of images processable per second is given by

the fraction of an image processed by one process multiplied

with the total execution time and the amount of analysis

necessary to process a whole image. The system we used for

benchmarking is equipped with two cores and can process two

half images in parallel. According to Tab. IV the total runtime

per process for 32 panels, which corresponds to 50% of the

image, is 37.6ms. This results in

1
2 image

37.6ms
× 2 Cores = 26.6

images

s
. (10)

The hardware we used for benchmarking does not repre-
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TABLE IV
AVERAGE RUNTIME (AVG) FOR 10 RUNS OF EACH STEP INCLUDING THE STANDARD DEVIATION (SD).

Step 64 Panels 32 Panels 16 Panels 4 Panels

AVG SD AVG SD AVG SD AVG SD

Normalize 16.8ms 2.0ms 13.0ms 2.2ms 11.8ms 1.7ms 11.5ms 1.9ms

Image
Remove Single 6.0ms 0.8ms 2.9ms 0.6ms 1.5ms 0.5ms 0.4ms 0.0ms

Pixel Noise
Rate using 16.1ms 0.74ms 7.7ms 0.99ms 3.9ms 0.85ms 1.0ms 0.09ms

NN
Binary Edge 13.6ms 2.2ms 8.4ms 1.7ms 6.8ms 1.3ms 6.0ms 1.0ms

Detection
Find connected 8.7ms 1.2ms 5.7ms 1.5ms 5.0ms 1.2ms 0.9ms 0.2ms

Pixels
Total 61.2ms 3.29ms 37.6ms 2.67ms 28.9ms 2.8ms 19.9ms 2.1ms

TABLE V
TECHNICAL SPECS OF THE SYSTEM USED FOR BENCHMARKING

CPU Intel I7-4650U 1.7GHz (TurboBoost 3.3GHz), 2 Cores

GPU Intel HD Graphics 5000, 1.5GB VRAM, 40 execution units

RAM 8GB DDR 1600MHz

TABLE VI
TECHNICAL SPECS OF THE SYSTEM USED FOR ANALYZING DIFFRACTION

IMAGES AT CFEL HAMBURG.

CPU 24x Intel(R) Xeon(R) CPU X7542 2.67GHz 6 Cores

RAM 768GB

sent real world conditions. Much more powerful systems are

currently used to process images in nanocrystallography. The

Center for Free-Electron Laser Science (CFEL) in Hamburg,

for example, uses a SGI system with 24 CPUs and 144

physical cores, see Tab. VI. Assuming the same processing

speed for each step of the prototype, we can extrapolate our

results. Using all 144 cores of the system and splitting each

image into 16 parts (4 panels each), it is possible to process

16 images in parallel. According to Tab. IV, 4 panels can be

processed in 19.9ms. This leads to a processing speed of

1
16 image

19.9ms
× 144 Cores = 452.3

images

s
. (11)

This calculation still assumes an efficiency of 100%, i.e.

each image is assumed to be ‘useful’. As mentioned in Sec. I,

the hit rates may even be smaller than 5%. For experimental

runs producing images with high contrast and comparatively

low noise, the efficiency might be as high as 50%.

Since for each image which is categorized as ‘not-

indexable’, the steps ‘Edge Detection’ and ‘Find connected

Pixels’ do not have to be applied, the total execution time

Fig. 4. Runtime of the prototype for different average efficiencies.

is shorter. This reduces the processing time for this kind of

image to 13ms, see Tab. IV. In Fig. 4, the average runtime for

an efficiency between 100% and 0% is shown. It can be seen

that the amount of images per second increases to up to 692

images per second at 0% efficiency (where no image contains

a signal). This rate is still not sufficient to meet the realtime

demands at the European XFEL experiment.

The processing speed could be improved further by utilizing

additional hardware close to the detector. The article [16]

shows that an 1600 × 1200 pixel image can be processed

by FPGAs in 0.684ms. One panel of the detector consists

of 194 × 185 pixel. Therefore, the processing time can be

reduced to

194× 185 pixel

1600× 1200 pixel
0.684ms = 0.0128ms . (12)

This translates to a processing speed of 77,810 images per

second using a desktop-class GPU, which is almost three times

the image rate of the European XFEL. This, in turn, means that

all convolution operations could be carried out by dedicated

hardware close to the detector using GPUs. This would save

6.4ms processing time. In addition, FPGAs connected to the
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detector panels could be used to normalize the data directly

after they are taken. This would save additional 11.5ms of

processing time.

The remaining steps to be carried out by more complex

hardware would then be ‘Rate using Neural Network’ (1ms)
and ‘Find connected Pixels’ (0.9ms). Using Eq. 11, this

translates to

1

16

1

1.9/1000
144

images

s
= 4736.8

images

s
. (13)

This corresponds to 17.5% of the image rate of the European

XFEL. Here, we assumed that every diffraction image contains

‘useful’ data. As already mentioned several times, most of the

images are ‘blank’ and contain only noise as the samples are

not hit by a laser flash. This means that given an efficiency

below 17.5%, it is possible to process all images taken by the

European XFEL in realtime.

IV. CONCLUSION

In this article we proposed an implementation of two

algorithms presented in earlier work. The prototype has been

explored in terms of the recognition rate of signals as well

as runtime behavior. The recognition rate is compared to the

software currently in use (Cheetah) and to signals identified

manually. Signals that are well separated from the background

noise are reliably identified by our prototype as well as

Cheetah. For weaker signals and signals at the border of

the detector, we found that the Cheetah software returned

false positives whereas our prototype on the other hand only

returned false positives in case of defective areas of the

detector, which can be dismissed if the coordinates of these

areas are known.

We also explored the runtime behavior of our prototype.

Here, we were able to show that it is possible to run all

steps on parts of the image in parallel. We demonstrated an

increase in processing speed. For steps implemented on the

GPU we observed a saturation of the speedup, most likely due

to memory operations. The runtime of the other steps increased

nearly linearly with the inverse size of the image. Using the

measured runtime on our system used for benchmarking we

extrapolated the results to hardware currently in use to process

images in nanocrystallography. We proposed a multilevel step

setup for processing data in nanocrystallography. The image

rate of the European XFEL experiment should be processable

by our proposed solution.

In our experiments it was necessary to supply a threshold

for signals manually. Ideally, it should be possible to determine

a reasonable threshold dynamically. This eliminates the need

for an expert reviewing the data. A basis for such a dynamic

threshold might be extractable from the data provided by our

neural network. It should be explored to which extend the

average intensity in combination with the standard deviation

could be used to calculate a dynamic threshold. In addition,

it would be desirable to get a better understanding of the

origin of noise within the images. By a close cooperation

with researchers working directly at an experiment it might

be possible to derive a model or simulation for the different

sources of noise. This could then be used to remove most of the

noise, and thus increase the recognition rates and processing

speed.
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