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Abstract—Imaging in the visible spectrum demonstrates 
difficulties in recognizing the faces in conditions of varying 
illumination, especially under total darkness conditions. 
Further, the pose variations in such images add extra burden 
and heavy challenge on successful performance. As such, 
thermal face recognition has laid itself as a successful 
alternative solution and eventually has become an area of 
growing interest. In this paper, we present a new technique for 
thermal face recognition based on affine moment invariants 
(AMI) technique. AMI technique has become one of the most 
important shape descriptors. The technique will be 
implemented at the component level by dividing the face image 
into non-overlapped components. We anticipate that this 
approach will offer robustness against variability due to 
changes in localized regions of the faces. The new method will 
be tested on a new database comprising of images of different 
expressions with various severe poses, and were taken within 
different time-lapse. The experimental results have shown that 
the proposed technique offers high discriminability and 
performs efficiently, with Rank-1 successful rate of ~95% over 
the different poses. 
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I. INTRODUCTION 

Researchers found that it is important to attempt to 
understand the strategies that the biological system employs, 
as a first step towards eventually translating these strategies 
into machine-based algorithms. These observations provide 
useful hints that can be valuable to computer vision systems 
[1]. In our electronically inter-connected society, reliable and 
user-friendly face recognition and verification system is 
essential in many sectors of our life. 

Currently, most researches on face recognition focus on 
visual images. Although considerable progress has been 
made in the domain of face recognition over the last decade, 
especially with the development of powerful methods, face 
recognition has shown to be not accurate enough in 
uncontrolled environments. Face recognition performances 
of a system can be degraded by many factors, including 
facial expression, head pose variation, occlusion and most 
importantly illumination changes [2].  

Over the last few years, thermal IR imaging based face 
recognition has emerged as a promising complement to 
conventional visible spectrum based approaches [3]. 
Different objects emit different range of infrared energy 

according to their temperature and characteristics. The range 
of human face and body temperature is nearly the same and 
quite uniform. This provides a consistent thermal signature. 
IR cameras provide a measure of thermal emissivity from the 
facial surface, and their images are relatively stable under 
illumination variation. The anatomical information which is 
imaged by infrared technology involves subsurface features. 

In this paper, we present a new technique for face 
recognition that exploits the statistical characteristics of a 
thermal image by the virtue of moment invariants. The 
statistical features of the images find a combination of 
multiple statistical patterns to produce a result that is 
enhanced in terms of information content for pattern 
recognition and classification. Moment invariants offer 
robustness against variability due to the changes in regions 
of the objects. The evaluation uses a database of thermal face 
images that has been developed in the Artificial Intelligence 
laboratory at the Arab Open University (AIAOU Database) 
[4]. The organization of the paper is as follows. A brief 
literature review is given in Section 2. A mathematical 
background of the proposed method is furnished in Section 
3. The experimental results are discussed in Section 4. 
Finally, the paper is brought to a conclusion in Section 5. 

II. LITERATURE REVIEW 

Due to its physiology, a human face consists of “hot” 
parts that correspond to tissue areas that are rich in 
vasculature and “cold” parts that correspond to tissue areas 
with sparse vasculature [5]. Every living and non-living 
object at a finite temperature emits radiation, which can be 
captured by infrared cameras. Early studies by Socolinsky et 
al. in [6, 7] suggest that long-wave infrared imagery of 
human faces is not only a valid biometric, but superior to 
using comparable visible-light imagery. Prokoski et al. [8] 
anticipated the possibility of extracting the vascular network 
from thermal facial images and using it as a feature space for 
face recognition. However, they did not present an 
algorithmic approach for achieving this. 

Bhowmik et al. [9] introduced the role of different IR 
spectrums and their applications. In their experimental work, 
they fused both thermal and visible images to enhance the 
recognition rate, as it is expected that the fusion process 
improves the overall performance of the system. They tested 
their method on IRIS and Terravic databases. The images of 
both databases were taken in one session. Guzman et al. [10] 
discussed a thermal imaging framework that consolidates the 
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steps of feature extraction through the use of morphological 
operators and registration using the linear image registration 
tool. The matching showed an average accuracy of 88.46% 
for skeletonized signatures and 90.39% for anisotropically 
diffused signatures.  

Papakostas et al. [11] employed orthogonal moment 
features as pattern descriptors of thermal face images. In this 
work, they have utilized granular kNN lattice computing 
techniques. The reported experimental results are promising. 
Unfortunately, they tested their method on a subset of 
Terravic Facial IR database consisting of 700 images only. 
Seal et al. [12] focused on preprocessing the thermal face 
image before feature extraction. They have noticed that some 
holes are created in the face area due to uneven distribution 
of thermal information which is nothing but variation in 
temperature statistics. These temperature statistics have been 
excluded in the binarization process. They implemented 
Gappy-PCA approach to store the statistical information of 
missing temperature zones.  

Li et al. [13, 14] used features based on local binary 
patterns (LBP) extracted from infrared images. They applied 
their algorithm in an active setting which uses strong NIR 
light-emitting diodes which is coaxial with the direction of 
the camera. However, it is unsuitable for uncooperative user 
applications or outdoor use due to the strong NIR component 
of sunlight. 

Abas and Ono [15] proposed the implementation of 
moment invariants; with respect to centroid point obtained 
from frontal mugshot images. The system decomposes a 
background filtered thermal image into 4 thermal regions via 
3-valued threshold method. In their work, they have only 
used the first moment invariant, I1, from Hu’s classical 
moment invariants. However, they have not explained the 
virtue behind such decomposition. Also, the database used is 
a small one and the authors have used only the frontal 
images with slight deviation in pose. No serious or 
challenging parameters were considered in their evaluation. 
The best recorded result was 92.5%. A different attempt at 
extracting invariant features which exploits the temperature 
differential between vascular and non-vascular tissues was 
proposed by Wu et al. [16] and Xie et al. [17]. 

III. AFFINE MOMENT INVARIANTS

The approach using invariant features is based on 
describing the objects by a set of measurable quantities 
called invariants that are insensitive to particular 
deformations and that provide enough discrimination power 
to distinguish objects belonging to different classes [18]. 
From a mathematical point of view, invariant I is a 
functional defined on the space of all admissible image 
functions that does not change its value under degradation 
operator D, i.e. that satisfies the condition I(f ) = I(D(f )) for 
any image function f. Usually, one invariant does not provide 
enough discrimination power and several invariants I1,…, In
must be used simultaneously. This will lead to having an 
invariant vector. In this way, each object is represented by a 
n-dimensional vector space called feature space or invariant 
space. Moments are scalar quantities used to characterize a 

function and to capture its significant features. From the 
mathematical point of view, moments are “projections” of a 
function onto a polynomial basis. Depending on the 
polynomial basis used, various systems of moments can be 
recognized.  

Geometric moment of order (p+q) for a two dimensional 
discrete function is computed using (1), 

(1)

where f(x, y) is the image function and M, N are image 
dimensions. The image function can be exactly reconstructed 
from the set of its moments. Invariance to translation can be 
achieved simply by seemingly shifting the object such that 
its centroid coincides with the origin of the coordinate 
system or, vice versa, by shifting the polynomial basis into 
the object centroid. In the case of geometric moments, we 
have the so-called central geometric moments 

(2)

where f(x, y) is the image function and M, N are image 
dimensions, and = m10/m00, = m01/m00 are the coordinates 
of the object centroid.  

In a vast majority of practical cases, pictures of 3D 
scenes or planar scenes are taken place arbitrarily in a 3D 
environment. In such cases, 3D objects and structures are 
represented by their projections onto a 2D plane since 
photography is a 2D medium [19]. Because of this, we often 
face object deformations that are beyond the translation-
rotation-scaling model. AMIs play a very important role in 
moment-based theories and can be considered as a crucial 
tool in these aspects.  

Affine transformation is a general linear transform of 
spatial coordinates of the image, which can (under certain 
circumstances) approximate the 3D object representation. 
They are invariant with respect to affine transform of the 
spatial coordinates. The AMIs can be derived in several 
ways that differ from each other in the mathematical tools 
used. One way to derive these moments is the algebraic 
invariants. Further, graph theory, tensor algebra, partial 
differential equations, and derivation via image 
normalization are different techniques that researchers have 
proposed in this domain. Suk and Flusser have presented a 
complete and independent list of AMIs in [20]. The first nine 
independent moments are explicitly given in equations (3–
11). The human head, with its face in different poses, can be 
considered as a 3D shape where the implementation of AMIs 
may lead to a suitable representation for face recognition. In 
this work, we propose a feature vector I consisting of the 9 
different moments described in equations (3-11), as shown in 
equation 12. The Euclidean distance (L2 norm) is used as the 
system classifier and is given by (13), for vectors a and b
both of d dimensions. 
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

IV. EXPERIMENTAL WORK

We have built a database consisting of 1500 images for 
20 different subjects taken in different sessions. We used the 
Infrared Camera ETIP 7320 which includes thermal infrared 
imaging radiometer using a micro-bolometer 320×240 focal 
plane array and a Vanadium Oxide technology base, 
ensuring high efficient thermal and spatial resolution. The 
images are of varying poses and expression conditions. 
Participants were asked to express three different emotions 
with their faces: neutral, anger, and smiling. For every 
expression, we have acquired five different images at five 
varying poses: 0°, 45°, 90°, 135°, and 180°. Image at 0° 
represents a person looking in the direction of his/her right-
hand shoulder. Further, image at 90° represents the frontal 
case view, whereas an image at 180° represents a person 
looking in the direction of his/her left-hand shoulder. 
Further, acquisitions were held at different times across a 
number of different weeks. Also, the database consists of 
males and females from various ethnic backgrounds. 
Examples of face images from the database are shown in Fig. 
1.  

In our work, the proposed method rely on measuring 
certain characteristics (moments) from a certain set of 
images. We refer to this set as a training set which is divided 
into five subsets according to the five poses (0°, 45°, 90°, 
135°, and 180°), where each pose consists of five images for 
every person (these images have different expression 

variations and have been randomly chosen). The rest 10 
images (for a specific person) from each pose have been 
used as the testing set (Again; these 10 images contain 
variations in expression). The test image is first categorized 
to a certain pose (one of the five described different poses). 
Then, it is tested against the different available classes (20 
classes) corresponding to that specific pose. So, the first step 
is to associate the probe image at hand to one of the five 
available pose subsets. Hence, we perform data clustering to 
associate the data subsets for individuals with similar thermal 
appearance in a particular range of views. This will allow the 
specialization of moments trained only on this particular 
cluster. The face pose is found by locating the nose and 
mouth from the thermal signature. 

Unlike the visible spectrum case, in which background 
clutter is often significant and in which face segmentation 
can be a difficult task, face segmentation in thermal images 
is in most cases far simpler. We have created a provisional 
segmentation map by declaring all pixels with values within 
a range between two thresholds, Tmin and Tmax, as belonging 
to the face region (i.e. foreground) and all others as 
background. Eventually all images were cropped to size 
45×40.  

We have implemented the new proposed technique on 
the face images at the “component level”. At the component-
based approach, the face image is divided into components 
where the local characteristics and features are combined 
together using a certain fusion method. Each moment is 
trained on a determined cluster (component) of thermal 
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images in the training database. Then, the local features are 
combined at a second stage to decide whether the input face 
image belongs to a given class. We propose dividing the 
image into 16 components. These components are of equal 
size and are non-overlapped. The results obtained from the 
similarity measures from the feature vectors for the different 
number of components are fused together to achieve the final 
similarity score. In our experiments, we have implemented 
“voting” fusion. Fig. 2 shows a thermal image for one 
subject divided into 16 components. Fig. 3 shows the 
recognition rates versus face pose for the proposed method. 
As we can see from the graph, the proposed approach has 
resulted in outstanding results with a successful recognition 
rate ranging from 93% to 95% over the different poses. 
These results show that the performance of the proposed 
method is stable and efficient even with images of large 
poses. Moreover, the challenge related to the existence of 
images with eyeglasses has been very well coped with. 

(a) 

(b) 

(c) 

(d) 

(e) 
Figure 1. Examples of thermal images from the AIAOU database with 

different poses and expressions: a) 0°, b) 45°, c) 90°, d) 135°, and e) 180°.

Figure 2. An example of the 16-component image for one subject with 
pose = 45°. 

Figure 3. Recognition rate vs. face pose using 16-component approach. 

V. CONCLUSION

In this paper, we have presented a new technique for face 
recognition based on statistical calculations of thermal 
images. We proposed the use of AMI moments which 
become one of the most important shape descriptors. The 
proposed technique has been implemented at the component 
level by dividing the face image into 16 components. The 
component-based AMI moments technique has utilized the 
local representations efficiently. These representations 
offered robustness against variability due to the changes in 
poses of a face image. The features at the local level are 
easier for estimating the rotations and misalignment. As the 
experimental results reveal, the technique is stable and can 
deal with the pose variations efficiently with recognition 
rates of ~95% over the different poses. 

Finally, it should be noted that the component-based 
approach should consider various parameters in order to be 
successful. One of these parameters is the suitable number of 
components.  
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